• Title/Summary/Keyword: Fire room range

Search Result 26, Processing Time 0.018 seconds

Exhaust Performance of a Kitchen Hood System with a Supply Air Slot on a Kitchen Table (조리대에 급기구를 가진 주방 레인지후드의 배기 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.489-494
    • /
    • 2016
  • There have been many cases when an air curtain installed in the apartment could not remove the gases well, such as carbon dioxide and particles like as smoke, oils, and vapors generated during cooking to disperse pollutants into the room. This study used a numerical analysis to show how the pollutant-removing performance of the range hood is changed when the air curtain is installed front of the kitchen table. The result of this study was that when the air amount supplied by an air curtain through the slot was about 50% of the exhaust amount, the capturing efficiency of the range hood for pollutants increased 90% more than without an air curtain. Even when the amount of supplied air was small, the capturing efficiency improved markedly with the use of an upward air curtain. In case that the air flow rate of the slot was greater than 60%, the capturing efficiency decreased.

Exhaust Characteristics of Kitchen Hood System with Inclined Air Curtain (에어커튼형 주방 레인지후드의 배기 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.594-599
    • /
    • 2014
  • There have been many cases that the air curtain installed in the apartment can not well remove the gases such as carbon dioxide and particles such as smokes, oils and vapors generated during the cooking to disperse the pollutants into the room. This study uses the numerical analysis to show how the pollutant-removing performance of the range hood is changed when the air curtain is installed on the range hood of kitchen. As a result of the study, it turned out that, when the air amount supplied by air curtain through the slot was about 60% of exhaust amount, the capturing efficiency of range hood for pollutants increased by 70~80% more than the case without the air curtain. Even when the exhaust amount was small, the capturing efficiency was improved a lot with the use of air curtain. In case that the air flow velocity of slot was greater than 2 m/s, the capturing efficiency turned out to decrease.

Analysis of Fire Risk Assessment Indicators of Publicly-Used Establishments using Delphi/AHP (Delphi/AHP를 활용한 다중이용업 신종업종의 화재위험평가지표 분석)

  • Kim, Myung-Cheol;Kim, Hak-Joong;Park, Kyung-Hwan;Youn, Hae-Kwon;Lee, Seung-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.87-94
    • /
    • 2019
  • Through a press release dated July 17, 2018, the Anti-Corruption and Civil Rights Commission recommended that the National Fire Agency develop preventive measures against fire in the "Indoor Archery Ground" and "Room Escape Café" etc., which were originally excluded from the category of "Publicly Used Establishments." This study developed the hierarchy of domains and indicators of measurement for fire risk assessment of the new business of publicly used establishments through the Delphi Method. It analyzed the goodness of fit scores (over 3.00) and secured an average score of 4.25. Using AHP analysis, the ratio of consistency for the domains of measurement of fire risk assessment was found to be 4.0%, which was lower than CR ≤ 0.1 (10%). The consistency of subsequent measurement indicators were distributed in the range of 0.1%~3.6%, and they were identified as being commonly consistent. The indicators of measurement appeared as follows in order of importance and priority: Type of Internal Passage of Establishment and Evacuation Capacity of Exit (0.316), Control of Ignition Source (0.141), Inherent Risk (0.106), Appropriateness and Adaptiveness of Fire Detection System (0.097), Control of Inflammables/Combustibles (0.084), Guides and Facilities helping Evacuation (0.075), Fire Resistant Structure and Finishing Materials (0.060), Compartmentalization and Emergency Exit (0.049), Risk of Fire Expansion (0.046), and Appropriateness and Adaptiveness of Fire Extinguishing Facilities (0.026). The findings of this study are expected to be expansively used as data for future research on the development of fire risk assessment indicators.

Design of PTZ Camera-Based Multiview Monitoring System for Efficient Observation in Vessel Engine Room (선박 기관실의 효율적인 감시를 위한 PTZ 카메라 기반의 멀티뷰 모니터링 시스템 설계)

  • Kim, Heon-Hui;Hong, Sang-Jun;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1129-1136
    • /
    • 2021
  • A pan-tilt-zoom (PTZ) camera-based monitoring system for efficient monitoring in the engine room of a vessel was designed. A number of places exist where traditional analog instruments are still used in vessel engine rooms, and blind spots closely related to safety exist, for which flooding or fire is a concern. A camera-based monitoring system that guarantees a wide range at a relatively fast cycle for these monitoring points can be an effective alternative to enhance the safety of a vessel. Therefore, a multiview monitoring system is proposed in which the functions of the existing PTZ camera are further strengthened using a software. The monitoring system comprises four modules: camera control, location registration, traversal control, and multiview image reconstruction. The effectiveness of the method was evaluated through a series of experiments in an engine room environment.

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

A Study on Mechanical Characteristics and Behaviors of FRP Composite with Three Different types of Matrices under High Temperature (온도 및 매트릭스 특성 변화에 따른 섬유강화 복합재료의 역학적 특성 및 구조적 거동 변화)

  • Jung, Woo-Young;Jang, Jun-Ho;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2008
  • Fiber Reinforced Polymer (FRP) composites are used extensively in aerospace, marine, automotive, infrastructure, chemical processing and sporting good applications. A concern with using FRP composites in some engineering structures is their high flammability and poor fire resistance In this research, material properties of FRP composites at increasingly high temperatures was measured and verified. The obtained mechanical properties of FRP composites were performed according to ASTM D3039/D3039M and tested to a wide range of heat conditions with temperatures from Room-temp. to 300 for times up to 30 min. It is found that the mechanical properties of FRP composites dropped with increasing heat or temperature. The reduction to the properties was due mainly to thermal degradation and combustion of the polymer matrix.

Electrocaloric Effect of Low Temperature Sintering (Pb0.88La0.08)(Zr0.65Ti0.35)O3 Ceramics (저온소결 (Pb0.88La0.08)(Zr0.65Ti0.35)O3 세라믹스의 전기열량 효과)

  • Ra, Cheol-Min;Yoo, Ju-Hyun;Choi, Seung-Hun;Kim, Yong-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.375-378
    • /
    • 2015
  • In this study, in order to develop the composition ceramics with the excellent electrocaloric properties, $(Pb_{0.88}La_{0.08})(Zr_{0.65}Ti_{0.35})O_3$ ceramics were fabricated by the conventional solid-state method. Electrocaloric effects of $(Pb_{0.88}La_{0.08})(Zr_{0.65}Ti_{0.35})O_3$ ferroelectric ceramics were investigated and discussed using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $220^{\circ}C$. The temperature change ${\Delta}T$ due to the electrocaloric effect was calculated by Maxwell's relations, and reached the maximum of ~0.19 at $190^{\circ}C$ under applied electric field of 30 kV/cm.

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.

A Study on the Effects of an Increase in the Height of Ship's Accommodation Area on Safe Evacuation in Emergency Situation (선박 거주구역의 높이가 피난안전에 미치는 영향에 대한 연구)

  • Kim, Won-Ouk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Unlike land fires, Fires on board a ship are not likely to be extinguished by skilled human resources using a variety of fire fighting equipments, but have to be brought under control on board a ship itself despite of difficult task. There are more cases of deaths from suffocation by smoke than from an increased temperature by heat in fires on board ships, because crew fail to secure a sufficient visibility range enough to escape from the scene of a fire or to leave the ship as early as possible. On the assumption that the height of ship's accommodation area increases from 2.0m to 2.3m comparable to the height of apartments on the ground in Korea, behaviors of fire smokes between the cases of 2.0m and 2.3m heights were compared and analyzed. Based on the blue print of the existing Training Ship "Hanbada", a new blueprint with the 30 cm height adjustment was additionally created. FDS (Fire Dynamic Simulator), which was created by the NIST in the United States and is the most widely distributed simulator for fires, was used to conduct a simulation and predict results. The results of simulation on the basis of temperature of $60^{\circ}C$ showed a safe evacuation period of time at the position 10m apart from the scene of a fire to increase by 55.8 seconds, when the height of ship's accommodation area increased from 2.0m to 2.3m. The results of simulation on the basis of visibility range of 6m showed the safe evacuation periods of time at the positions 10m, 20m and 30m apart from the scene of a fire to increase by 27.1 seconds, 109.2 seconds and 73.3 seconds, respectively, as the height of ship's accommodation area increased from 2.0m to 2.3m. This means that crew can escape more safely from a scene of fires on board when the height of ship's accommodation area is increased and equal to the height of living room in a building on land.