• Title/Summary/Keyword: Fire room range

Search Result 26, Processing Time 0.03 seconds

A Room-Corner Fire Model을 적용한 건축내장재의 화재확산 특성 평가(1)

  • Kim, Un-Hyeong
    • Fire Protection Technology
    • /
    • s.24
    • /
    • pp.32-39
    • /
    • 1998
  • A room-corner fire scenario of ISO 9705 with flame spread model developed by Quintiere is applied to the interior finish materials to show the sensitivity of properties derived from AST, E-1321 and ASTM E-1354 is investigated and various range of thermal properties by the author were analyzed in the model. There are including flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The time for total energy release rate to reach 1MW is examined. Though some areas are neede for improvements, The model appears to predict good results with all the range of input properties and could be

  • PDF

An Analysis of the Opening and Closing Condition with Various Fire Door Size in the Pressurized Room (부속실 출입문 크기 변화를 고려한 개방 및 폐쇄조건 분석)

  • You, Woo-Jun;Nam, Jun-Seok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • A relationship between resisting moment and the structure of an automatic closure device is introduced for analyzing the effect of opening and closing condition on various fire door sizes in the pressurized room for smoke control system. The larger the size of fire door is, the more force is required for reaching to opening and closing conditions and there exists the design range of fire door in the pressurized room reflecting the closing time of fire door, rotative velocity, a relation between rotative angle and force and the efficiency of the automatic closure device.

An Investigation of Fire Human Reliability Analysis (HRA) Factors for Quantification of Post-fire Operator Manual Actions (OMA) (화재 후 운전원수동조치(OMA) 정량화를 위한 화재 인간신뢰도분석 (HRA) 요소에 대한 고찰)

  • Sun Yeong Choi;Dae Il Kang;Yong Hun Jung
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.72-78
    • /
    • 2023
  • The purpose of this paper is to derive a quantified approach for Operator Manual Actions (OMAs) based on the existing fire Human Reliability Analysis (HRA) methodology developed by the Korea Atomic Energy Research Institute (KAERI). The existing fire HRA method was reviewed, and supplementary considerations for OMA quantification were established through a comparative analysis with NUREG-1852 criteria and the review of the existing literature. The OMA quantification approach involves a timeline that considers the occurrence of Multiple Spurious Operations (MSOs) during a Main Control Room Abandonment (MCRA) determination and movement towards the Remote Shutdown Panel (RSP) in the event of a Main Control Room (MCR) fire. The derived failure probability of an OMA from the approach proposed in this paper is expected to enhance the understanding of its reliability. Therefore, it allows moving beyond the deterministic classification of "reliable" or "unreliable" in NUREG-1852. Also, in the event of a nuclear power plant fire where multiple OMAs are required within a critical time range, it is anticipated that the OMA failure probability could serve as a criterion for prioritizing OMAs and determining their order of importance.

A Study on the Improvement of Fire Alarm System in Special Buildings Using Beacons in Edge Computing Environment (에지 컴퓨팅 환경에서 비콘을 활용한 특수건물 화재 경보 시스템 개선 방안 연구)

  • Lee, Tae Gyu;Choi, Kyeong Seo;Shin, Youn Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.217-224
    • /
    • 2022
  • Today, with the development of technology and industry, fire accidents in special buildings are increasing as special buildings increase. However, despite the rapid development of information and communication technology, human casualties are steadily occurring due to the underdeveloped and ineffective indoor fire alarm system. In this study, we confirmed that the existing indoor fire alarm system using acoustic alarm could not deliver a sufficiently large alarm to the in-room personnel. To improve this, we designed and implemented a fire alarm system using edge computing and beacons. The proposed improved fire alarm system consists of terminal sensor nodes, edge nodes, a user application, and a server. The terminal sensor nodes collect indoor environment data and send it to the edge node, and the edge node monitors whether a fire occurs through the transmitted sensor value. In addition, the edge node continuously generate beacon signals to collect information of smart devices with user applications installed within the signal range, store them in a server database, and send application push-type fire alarms to all in-room personnel based on the collected user information. As a result of conducting a signal valid range measurement experiment in a university building with dense lecture rooms, it was confirmed that device information was normally collected within the beacon signal range of the edge node and a fire alarm was quickly sent to specific users. Through this, it was confirmed that the "blind spot problem of the alarm" was solved by flexibly collecting information of visitors that changes time to time and sending the alarm to a smart device very adjacent to the people. In addition, through the analysis of the experimental results, a plan to effectively apply the proposed fire alarm system according to the characteristics of the indoor space was proposed.

A Study on Required Safe Egress Time (RSET) Comparison and Error Calculation in Relation to Fire Room Range Set Conditions of Performance Based Fire Safety Designers (성능위주설계자들의 화재실 범위 설정 방식에 따른 소요피난안전시간(RSET) 비교 및 오차산정에 관한 연구)

  • Baek, Sona;Choi, Jun-Ho;Hong, Won-Hwa;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • The Installation, Maintence, and Safety Control of Fire-fighting Systems Act of South Korea regulates that over 30-storey high-rise buildings including underground spaces should vitally perform the Performance-based Design to minimize property damage and personal injury as a fire risk assessment in advance. Therefore a PBD designer such as a fire safety professional engineer evaluate occupant's life safety by a scientific methodology. In order to evaluate the life safety, fire safety designers calculate the Required Safety Egress Time (RSET) which does not have the legal criteria regarding the standard method of calculation yet. So this way has been showing different results depending upon the designer's choice, knowledges and experiences. In this study, RSET calculation methods by six designers respectively were analysed from the thirteen reports of real performance based design projects conducted in Busan for a last five years. In particular, the Response Time calculation methods which have the most powerful effect for figuring the RSET are compared with the other designer's to deduce an error value.

A Study on Performance Improvement Measures of Pressurized Smoke Control Systems for Exit Passageways of High-Rise Buildings (고층건축물의 피난경로 가압제연시스템 성능개선대책에 관한 연구)

  • Son, Bong-Sae;Kim, Jin-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.703-714
    • /
    • 2009
  • One of the biggest problems in smoke control systems for high-rise buildings is stack effect, but there are no recognized methods or measures to solve the problem of stack effect as yet. The stack effect can be overcome by forming the uprising current inside the stair hall properly, but there is a limit to the height in supplying into the stair hall the smoke control air volume to be supplied to a floor in case of escape from fire. The limit to the height can be extended by over-coming the stack effect by pressurizing the stair hall and the ancillary room simultaneously. It can also be anticipated that the stack effect can be overcome by connecting the air supply shaft to the stair hall at the top. As a result of computer simulations using a network type of tool, it is found that adequate performance can be achieved by pressurizing the stair hall only for a building of 190m or less, and up to 360m when pressurizing the stair hall and the ancillary room simultaneously. In all those cases, however, an overpressure venting damper is required which operates within a suitable range for venting the overpressure outside.

Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms (수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 -)

  • Jeong, Jeong Ho;Lee, Byung Kwon;Yeon, Jun Oh;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

A Validation Study of Temperature Field Predicted by Computational Fire Model for Spray Fire in a Multi-Compartment (다중구획공간내 분무화재시 화재해석모델의 온도장 검증연구)

  • Kim, Sugn-Chan
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.23-29
    • /
    • 2014
  • The present study has been conducted to investigate the validity of the computational fire model and the results predicted by BRANZFIRE zone model and FDS field model are compared with a real scale fire test with spray fire in a multi-compartment. The liquid spray fires fueled with toluene and methanol are used as the fire source and the quantitative measurement of heat release rate is performed in an isolated ISO-9705 compartment with a standard door opening. The temperature field predicted by FDS model showed good agreement with the measurement in the fire room and the corridor, and BRANZFIRE model also gave acceptable result in spite of its simplicity and roughness. The mean temperature predicted by FDS model corresponds with measurement within maximum discrepancy range of 25% and the overall mean value of FDS model matched well with experimental data less than 10%. This study can contribute to establish the limitation and application scope of computational fire model and provide reference data for applying to reliable fire risk assessment.

Derivation of the Mechanical Properties of Structural Steels at High Temperatures (고열 환경에서의 구조용 강재 특성 데이터베이스 구축)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.47-55
    • /
    • 2007
  • The mechanical properties such as 0.2% and 1% offset proof strength and elastic modulus are essential for a structural steel structure when the structure would be evaluated and designed to identify the performance of the structural stability exposed to fire condition. To obtain the mechanical properties for the structural steels at high temperature which are consisted of ordinary and marine ones, the tensile tests at various high temperatures had been conducted with two kinds of specimen of general structural steel SS 400 and welded steel SM 490 at the range of room temperature to $900^{\circ}C$ at interval of $100^{\circ}C$.

Server Room Temperature Condition in Data Center with Cold Aisle Containment System (냉복도 밀폐시스템을 적용한 서버실의 실내온도조건)

  • Jung, Yong-Ho;Chang, Hyun-Jae;Seo, Jang-Hoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • In this study, a cold aisle containment system was proposed among various strategies to reduce the energy waste by recirculation air from the hot aisle. To verify the effectiveness of the cold aisle containment system, a test bed which is similar to an actually existing server room was set up in the Internet Data Center(IDC) building. Comparative experiments, conventional open type cooling system and cold aisle containment system were carried out under actual conditions. The result revealed that the range of inlet temperature of the server system was $20{\sim}25^{\circ}C$ in an existing cooling system and the range of inlet temperature dropped below $20^{\circ}C$ by the cold aisle containment system. After all, cold aisle containment system was proved to be the solution for energy saving cooling system.