• Title/Summary/Keyword: Fire protection design

Search Result 329, Processing Time 0.027 seconds

A Study on Improvement of Discharge Pressure Measurement of Indoor Fire Hydrant System (옥내소화전설비의 방수압 측정 개선에 관한 연구)

  • Min, Se-Hong;Jeong, Sang-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.67-72
    • /
    • 2012
  • Indoor fire hydrant facilities and sprinkler system applied to the initial fire suppression for buildings' interior fire are pivotal roles in extinguishing the fire in the early stage. The roof shapes of recent buildings combined with distinctive local culture and design are being constructed. Distinctive roof forms, i.e. gable roof buildings are planned and built, View point planning with the roof gardens also restricts measurement of the discharge pressure on the indoor fire hydrant, It is too narrow to gauge the water discharge pressure with deploying up to 5 water hoses. To resolve these problems improvement for the efficient management of indoor fire hydrant system and the effective early stage flame extinguishment is suggested.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns (철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안)

  • Kim, Sun-Hee;Ok, Chi Yeol;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.

Motive for the Fire Resistance Design Guidelines for High-Strength Concrete Structures (고강도콘크리트 구조내화설계 지침의 제정 배경 및 고찰)

  • Kwon, Young-Jin;Lee, Jae-Young;Shin, Yi-Chul;Seo, Dong-Gu;Han, Byung-Chan;Kim, Jae-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.3-8
    • /
    • 2007
  • 초고층건축물이 증가함에 따라 고강도콘크리트의 사용량이 증가하는 추세이다. 고강도콘크리트는 내구성 및 사용성이 우수한 장점을 가지고 있는 반면 화재시 심각한 폭렬현상을 발생시켜 콘크리트 내역 감소 및 철근의 노출로 인해 건물이 붕괴까지 이르게 되는 원인이 된다. 따라서 고강도콘크리트의 내화특성을 고려한 해석(열응력, 질량 이동, 폭렬) 과정을 거쳐 폭렬 저감방안을 모색하여야 한다. 이러한 폭렬 저감방안을 표층부의 온도상승 온도구배 저감 방안, 수중기압 저감/수분 이동을 용이하게 하는 방안, 폭렬억제형 피복콘크리트 이용방안, 폭렬에 의한 콘크리트의 비산을 방지하는 방안 등이 있으며 각 방안들은 장단점을 내포하고 있어 상황에 따라 탄력적으로 적용하여야 하며, 향후 고강도 콘크리트의 역학적 성상을 고려하여 단점을 보완하고 추가적인 대책용 수립할 수 있도록 많은 연구가 필요 할 것으로 판단된다.

  • PDF

A Review on Fire Safety Engineering: Key Issues for High-Rise Buildings

  • Li, Guo-Qiang;Zhang, Chao;Jiang, Jian
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.265-285
    • /
    • 2018
  • This paper presents a state-of-the-art review on the design, research and education aspects of fire safety engineering (FSE) with a particular concern on high-rise buildings. FSE finds its root after Great Fire of Rome in 64 AD, followed by Great London Fire in 1666. The development of modern FSE is continuously driven by industry revolution, insurance community and government regulations. Now FSE has become a unique engineering discipline and is moving towards performance-based design since 1990s. The performance-based fire safety design (PBFSD) involves identification of fire safety goals, design objectives, establishment of performance criteria, and selection of proper solutions for fire safety. The determination of fire scenarios and design fires have now become major contents for PBFSD. To experience a rapid and positive evolution in design and research consistent with other engineering disciplines, it is important for fire safety engineering as a profession to set up a special educational system to deliver the next-generation fire safety engineers. High-rise buildings have their unique fire safety issues such as rapid fire and smoke spread, extended evacuation time, longer fire duration, mixed occupancies, etc., bringing more difficulties in ensuring life safety and protection of property and environment. A list of recommendations is proposed to improve the fire safety of high-rise buildings. In addition, some source information for specific knowledge and information on FSE is provided in Appendix.

A Study on Research Technique of the combustibles an Housing Facilities in Korea (국내 주거시설의 가연물 조사 기법에 관한 연구)

  • Shin, Yi-Chul;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.289-293
    • /
    • 2008
  • In performance-based on fire safety design of buildings, design fires are assumed to be relatively coarse information on potential combustible objects described by its name, weight, size and main constituent materials. As early as 1970s, researchers from Japan has employed various methods of research regarding combustibles investigations. In result, researchers came up with one method that is being presently used. Therefore, our country basis in collection of data for combustibles yielded average measure, receipt rate of furniture usage and execution of combustible investigations to occupancy zone of university respondents. We have found out problem about excessive usage of multi-outlet extensions through research.

  • PDF

A Study on the Escape capacity for Evacuation safety Design of PBD foothold in Korea(I) (국내 PBD기반 피난안전설계를 위한 피난용량 산정에 관한 연구(I) - 국내외 피난용량 산정방안의 비교 -)

  • Seo, Dong-Goo;Hwang, Eun-Kyung;Hwang, Keum-Suk;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.340-347
    • /
    • 2008
  • Recently the consideration for occupant's security has been raised as very important design element from the fire by building's large sized, higher storied, and its compounded. But the domestic laws regulated the predicative laws according to the technical standard which has no difference from the past domestic evacuation regulation. Therefore, regulation of escape code and developing technology for Korean conditions are needed to reduce victims during disaster by protecting occupant and guiding people to safe places.

  • PDF

A Comparative Study on Domestic and Foreign Standards for Air Supply for the Improvement of a Smoke Control System for High-Rise Buildings (국내 고층건축물의 제연설비 성능 개선을 위한 국내·외 급기량 관련 기준 비교연구)

  • Kim, Hye-Won;Lee, Byeong-Heun;Jin, Seung-Hyeon;Lee, Su-Gak;Kim, Jung-Yup;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.105-111
    • /
    • 2019
  • In South Korea, smoke control systems are designed according to the fire safety standards NFSC501 and NFSC 501A. However, there is a problem in that the design values are incompatible when measuring the performance of the system after the design construction for calculating the leakage crack area described in the standards. Therefore, we compared the standards for smoke control systems from South Korea, Japan, and the United Kingdom. In South Korea, designs are conducted uniformly according to the NFSC 501A Manual, but in Japan and the United Kingdom, designs consider smoke temperature, duct loss, and fire floor air supply. Furthermore, they use larger values than in South Korea.

A Study on Assessment of Fire and Evacuation Safety in Environmental Energy Facilities (환경에너지시설의 화재 및 피난 안전성 평가에 관한 연구)

  • Jeon, Yong-Han;Han, Sang-Pil
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, fire and evacuation safety of environmental energy facilities using fire and evacuation simulation was examined as part of performance-oriented design. The worst-case fire scenarios in which fire-fighting facilities such as sprinkler fire extinguishing and smoke control systems are not working, and the FDS analyzes the visibility, temperature distribution, and carbon monoxide concentration distribution through FDS. The safety was examined. As a result, it was proved that evacuation could limit the visibility, temperature, and carbon monoxide concentration in a smooth range, based on the safety standards set by relevant laws. In other words, it was possible to verify the safety of fire and evacuation for environmental energy facilities where a large amount of combustibles and fires coexist.

A Study on the Smoke control Design parameter of Large Volume space by Fire Dynamic Simulation (화재 시뮬레이션(FDS)을 이용한 대형공간의 제연 설계인자에 관한 연구)

  • Choi, Sang-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.237-243
    • /
    • 2018
  • Performance-oriented design has been introduced in fire protection design, and various efforts have been made to minimize the damage caused by fire in the design stage. We conducted a study to provide information for reasonable design factors using a Fire Dynamic Simulation code provided by the NIST on boundary width and amount of supply. This paper shows that using a living-room air-supply system in a large space and dividing the space by a ventilation boundary are the two factors that are considered to have the greatest influence on the design of the living room ventilation. The results show that for performance-based design, the width of the ventilation boundary is designed to be the maximum limit in the initial design. It is judged that reasonable air volume determination should be made through various methods.