• 제목/요약/키워드: Fire occurrence

검색결과 436건 처리시간 0.029초

A Study on Safety Awareness and Safety Accident Occurrence of Elementary School Students (초등학생의 안전의식과 안전사고 발생 실태에 관한 연구)

  • Park, Dae-Sung;Kim, Gwang-Seok
    • The Korean Journal of Emergency Medical Services
    • /
    • 제9권2호
    • /
    • pp.5-20
    • /
    • 2005
  • Purpose: This study is to examine the relationship between safety awareness and safety accident occurrence with elementary school students. Materials and methods: It selected 10 elementary schools under the supervision of Jeonnam Board of Education and sampled 700 students randomly from 2-3 classes in the 5th and the 6th grade. One preliminary survey was conducted to revise and complement the contents and forms of questionnaire with 70 students of a school from Apr. 1 to 6, 2004 and this study was conducted from Apr. 10 to 30, 2004. Total 700 questionnaires were distributed and 681 were collected (97%) and 602 were used for final analysis except 79 lacking responses. Data collected were analyzed with SPSS statistical program. Results: The average score of safety awareness of subjects by area was high as 2.72 points out of a possible 3. Area showing the highest safety awareness was safety from fire. Girl students had higher safety awareness than boy students. The fifth graders had higher safety awareness than the sixth graders. In safety awareness by the number of siblings, single son or single daughter showed the highest safety awareness. 53.2% of the subjects experienced accident for one year, the frequency of accident was mostly once and most of accidents were occurred at school. Accidents for the last year were higher in boy students, the sixth graders. According to relationship between safety awareness and safety accident, group with lower safety awareness in school safety(P < .022), traffic safety(P < .016), fire safety(P < .019), home safety(P < .007) and accident treatment and first aid(P < .003) had higher safety accidents than that with higher safety awareness. Conclusion: Development of safety education program by grade, that of parents safety education program, field experience and practice with students, teachers and parents and various safety education programs should be substantially and repeatedly accomplished for prevention education of safety accidents. In addition, to prevent and cope with safety accidents, safety education should be reflected on normal education, safety education textbook be developed, special safety education teachers be employed for safety education.

  • PDF

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

Study on the Improvement of Inspection-Related Regulation of Fire Protection Systems and Equipment - Focused on the Fire Administration Process - (소방시설 자체점검 관계법령의 개선방안에 대한 연구 - 소방행정프로세서를 중심으로 -)

  • Lee, Jong Hwa
    • Fire Science and Engineering
    • /
    • 제33권1호
    • /
    • pp.188-193
    • /
    • 2019
  • In the past, the risk of fire and the rate of fire occurrence has increased gradually as the quality of life improved due to rapid economic growth, and the government enacted Fire Prevention Act. The existing inspection method was revised considering the rapid increase in the number of fire-fighting objects(hereinafter referred to as specific fire-fighting objects) that require the installation of fire-fighting facilities, and has been applied to this day. On the other hand, unlike the rapid increase in specific fire-fighting objects and the development of fire prevention technologies, the scope of work and inspections by unsuitable inspectors caused a large fire accident, which required improvement of the related laws. This study evaluated, the Act on the relationship of firefighting facilities, which had been implemented previously to identify fire victims, save lives, secure independence of fire inspection agencies, and ensure the accuracy of fire prevention actions.

The Method of Force of Fire in High-Rise Building by Guide to the Fire Safety Concepts Tree: Focusing on Manually Fire Suppression Strategy (화재안전트리 이론에 따른 초고층건축물의 소방력 공급방안: 수동화재진압 전략을 중심으로)

  • Oh, Seong-Ju;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • 제34권1호
    • /
    • pp.79-88
    • /
    • 2020
  • This study analyzes the issue of the supply of force of fire in the high-rise buildings, and proposes an efficient method to do so. The results are as follows. First, in terms of Detect fire, it is necessary to shorten force of fire supply time by diversifying fire alarms such as alarms, vibrations, and voices from outside, clarification of fire occurrence points, and marking of fire. Second, with regard to communication signals, strengthening the installation target of wireless communication auxiliary facilities, supplementing the installation of repeaters, and constructing a multicommunications network were proposed. Third, in terms of Decide action, it is necessary to supply firefighter and firefighting equipment with the method of crossing of a river in adjacent buildings. Fourth, in terms of Respond to site, helicopters and emergency elevators are used to assist in the supply of firefighting equipment using drones. Easy-to-break glass windows and identification marks are required in every floor. Finally, in terms of applying fire suppressants, water can be supplied by means of a helicopter adjacent to the structure.

A Study on the Disaster Prevention of the Royal Tomb Eureung in the Mountain Cheonjang - Estimation on Forest Fire Risk Considering Forest Type and Topography - (천장산 의릉의 방재대책에 관한 연구 - 임상과 지형인자를 고려한 산불위험성 평가 -)

  • Won, Myoung-Soo;Lee, Woo-Kyun;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • 제28권1호
    • /
    • pp.59-65
    • /
    • 2010
  • The purpose of this study is to analyze the risk of the forest fire, considering the topography and the forest, for establishing disaster prevention measures of cultural heritage, Uireung, over in Cheonjang-mountain. To do that, we estimate the occurrence and spread of the forest fire over in Cheonjang-mountain through a forest fire probability model(logistic regression), using the space characteristic data($100m{\times}100m$). The factor, occurrence of the forest fire, are diameter class, southeast, southwest, south, coniferous, deciduous, and mixed forest. We assume the probability of the fire forest in each point as follow : [1+exp{-(-4.8081-(0.02453*diameter class)+(0.6608*southeast)+(0.507*southwest)+(0.7943*south)+(0.29498*coniferous forest)+(0.28897*deciduous forest)+(0.17788*mixed forest))}]$^{-1}$. To divide dangerous zone of the big forest fire, we make the basic materials for disaster prevention measures, through the map of coniferous forests, deciduous forests, and mixed forest. The damage of cultural heritage caused by a forest fire will be reduced through the effective preventive measures, by forecast a forest fire to using this study.

Predictive Analysis of Fire Risk Factors in Gyeonggi-do Using Machine Learning (머신러닝을 이용한 경기도 화재위험요인 예측분석)

  • Seo, Min Song;Castillo Osorio, Ever Enrique;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제39권6호
    • /
    • pp.351-361
    • /
    • 2021
  • The seriousness of fire is rising because fire causes enormous damage to property and human life. Therefore, this study aims to predict various risk factors affecting fire by fire type. The predictive analysis of fire factors was carried out targeting Gyeonggi-do, which has the highest number of fires in the country. For the analysis, using machine learning methods SVM (Support Vector Machine), RF (Random Forest), GBRT (Gradient Boosted Regression Tree) the accuracy of each model was presented with a high fit model through MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error), and based on this, predictive analysis of fire factors in Gyeonggi-do was conducted. In addition, using machine learning methods such as SVM (Support Vector Machine), RF (Random Forest), and GBRT (Gradient Boosted Regression Tree), the accuracy of each model was presented with a high-fit model through MAE and RMSE. Predictive analysis of occurrence factors was achieved. Based on this, as a result of comparative analysis of three machine learning methods, the RF method showed a MAE = 1.765 and RMSE = 1.876, as well as the MAE and RMSE verification and test data were very similar with a difference between MAE = 0.046 and RMSE = 0.04 showing the best predictive results. The results of this study are expected to be used as useful data for fire safety management allowing decision makers to identify the sequence of dangers related to the factors affecting the occurrence of fire.

Evaluation of Disease Occurrence by Cultivar, Sowing Date and Locational Difference in Korean Soybean Fields (콩의 품종, 파종시기 및 지역적 차이에 대한 병 발생 평가)

  • Kim, Hong-Joe;Oh, Ji-Yeon;Kim, Dong-Kwan;Yun, Hong-Tai;Jung, Woo-Suk;Hong, Jeum-Kyu;Kim, Ki-Deok
    • Research in Plant Disease
    • /
    • 제16권2호
    • /
    • pp.176-182
    • /
    • 2010
  • Occurrence of plant diseases is dependent on various factors in the agricultural system. Due to recent extensive environmental climate changes, i.e. global warming, agricultural systems such as planting dates and cultivars are being affected. Gradual transition in disease occurrence and incidence in the agricultural fields can also be affected by direct and/or indirect environmental changes. In this study, we evaluated disease occurrence and incidence in soybean plants to investigate whether it could be related with cultivars, planting dates and geographical differences in Korea in 2008. Soybean cultivars including 'Taekwang', 'Pungsan', 'Cheongja 3', 'Saeol', and 'Dawon' were planted in four different dates, May 15, June 1, June 15, and June 30, in two locations, Suwon, and Naju. Soybean diseases such as wild fire and bacterial pustule were mainly found depending on cultivars, planting dates, and areas. Wild fire occurred severely on cv. 'Taekwang' while bacterial blight did on cv. 'Dawon' among tested cultivars. Disease developments of wild fire and bacterial blight generally decreased in delayed planting regardless of cultivars.

The Necessity of Introducing Fire Point Notification Displays in Complex Buildings to Reduce Required Safe Escape Time(RSET) (RSET 감소를 위한 복합건축물의 화재발생지점 알림표시등 도입 필요성)

  • Jusung Kim;Jongkwen Ha;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • 제26권3호
    • /
    • pp.71-82
    • /
    • 2024
  • In modern society, buildings are becoming more complex, and the population is becoming more densely populated. Such large buildings require a variety of evacuation measures, as there is a high possibility of large-scale human casualties due to increased evacuation distance and evacuation time in the event of a fire. Strobe light and exit sign light are used as important evacuation equipment to provide early warning and evacuation directions. In this thesis, we conducted a fire simulation assuming that a fire occurrence point notification function and a strobe light function were added to equipment such as visual alarms and evacuation guidance, and compared and analyzed the difference in evacuation completion time with existing equipment. The scenarios for the simulation were divided into "general fire situations" and "fire location and evacuation exit guidance situation" and the differences in evacuation completion time in the event of a fire were compared and analyzed for each floor from the 1st floor to the 3rd floor. The maximum travel distance to complete evacuation in the case of a fire on the first floor decreased by 80.6 m and the evacuation completion time decreased by 329.4 seconds, and the maximum travel distance to complete evacuation in the case of a second-floor fire decreased by 28.5 m and the evacuation completion time by 438.8 seconds. During the fire on the third floor, the maximum distance decreased until evacuation was completed to 3.4 m, and the evacuation completion time was reduced by 355.6 seconds. It is expected that if the congestion level of evacuation routes is reduced by utilizing the congestion level of evacuation exits when fire alarm systems and evacuation equipment are activated, the evacuation completion time will be further shortened and evacuations will be carried out quickly and safely.

Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상)

  • Lim, Seo-Hyung;Yoo, Suk-Hyung;Moon, Jong-Woog
    • Fire Science and Engineering
    • /
    • 제25권5호
    • /
    • pp.8-13
    • /
    • 2011
  • High strength concrete is the occurrence of explosive spalling associated with high temperature such as a fire. The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. The purpose of this study is to investigate the mechanical properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to perlite, contents of polypropylene fiber. As a result of this study, it has been found that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (I) - Experimental Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(I) - 실험적 접근 -)

  • Park, Won-Hee;Kim, Dong-Hyeon;Chang, Hee-Chul;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2006
  • In this study boundary velocity which is one of the important boundary conditions for numerical simulation for subway station on fire are experimentally obtained. The tests were conducted according to its operating mode of the ventilation systems in the platform: smoke extraction ventilation mode in occurrence of fire and normal ventilation mode for air conditioning. Velocities are measured at various points on the platform. To examine smoke extraction and air supply capacity in the platform level, air velocities were checked on opening vents. Numerical analysis under normal ventilation mode without fire is conducted by using measured boundary conditions, and the numerical results are compared with the measured velocities on the platform.