• Title/Summary/Keyword: Fire flow velocity

Search Result 137, Processing Time 0.028 seconds

Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance (노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

An Experimental Study of Flow Behaviour in Underground Stairway Fire (지하계단 화재에서 유동에 대한 실험연구)

  • 정진용;홍기배;이재하;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • Reduced-scale experimental study was carried out on the heat flow behavior which flows under the sloped ceiling in underground fire. Temperature and flow velocity were measured to characterize the ceiling jet along the sloped stairway ceiling. The methanol fuel was used as a model fire source giving 2.2 and 3.4 kW, with changing the slope angle of stairway adopting of 15, 25, 35, and 45 deg. Based on the experimental data, excess temperature and velocity along the sloped stairway ceiling were examined which are usefully applicable to estimate the activating conditions of heat detector and sprinkler head mounted on the sloped ceiling. Excess temperature in upper exit of the sloped stairway was also examined to analyze the soffit which delays the smoke diffusion. The result shows that the activating conditions of heat detector and sprinkler in the sloped stairway ceiling have to be considered differently in a point of about 30 deg.

A Study on Fluid Flow Analysis of High Pressure Positive Displacement Pump without Clearance (클리어런스가 없는 초고압 회전용적형 헬리컬기어 펌프의 유동해석에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.33-38
    • /
    • 2015
  • For the purpose of high-pressure and suction of fixed amount, the development of ultra-high pressure rotating helical gear positive displacement pump with no clearance had been proceeded. The CFD analysis was performed to verify the internal pressure and the discharge flow velocity of the pump. Accordingly, a flow analysis were performed by FVM technique and we were unable to obtain a successful result since the fluid domain is separated because the grid is not configured in a row in FVM flow analysis of the fully enclosed type without clearance. Because of these problems, the flow analysis was performed by MPS method which grid configuration is not needed and the internal pressure and the discharge flow velocity of the pump were confirmed through the MPS flow analysis. At 1,000 rpm rotation speed of the rotor, the minimum internal pressure of the pump was 19.5 bar, maximum pressure was 44.6 bar and average pressure was 33.9 bar. And the minimum discharge flow velocity was 64.5 m/s, maximum discharge flow velocity was 84.8 m/s and average discharge flow velocity was 76.1 m/s. Through this study, we could confirm that MPS method was more suitable than FVM method in terms of flow analysis with no clearance. In addition, the relationship of the flow velocity according to the change of ultra-high pressure rotating helical gear positive displacement pump could be identified through this study.

Study on Flow and Smoke Behaviors on in Longitudinal Tunnel (장대 터널에서의 배연방식에 따른 기류 및 연기거동 연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Jeong-Hak;Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1521-1527
    • /
    • 2009
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

Full-Scale Test of Smoke-Control Performance of a Subway Tunnel (지하철 본선터널 제연성능 실물 실험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Hot smoke test is done in a subway tunnel. Alcohol trays of 1.0 MW and smoke generators are used for generating hot smoke. The fans equipped with the tunnel are successively run 9 min after smoke generation. It is verified how hot smoke is controlled by fans. Velocity and direction of flow, temperature and smoke density are measured and analyzed for smoke control performance of the tunnel with fans and analyzed from the fire-safety-point of view. Velocity of smoke flow is obtained by using measured velocity and temperature at the ceiling of the tunnel. The time when smoke-control flow is builded up is different for the different positions. Velocity distributions at various positions will be used for the boundaries and the comparison data in numerical simulations for evaluation on smoke-control facilities of subway tunnel.

CHARACTERISTICS OF SMOKE CONCENTRATION PROFILES WITH UNDERGROUND UTILITY TUNNEL FIRE

  • Kim Hong Sik;Hwang In Ju;Kim Youn-Jea
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.94-98
    • /
    • 2005
  • Accurate prediction of the fire-induced air velocity, temperature and smoke flow in underground utility tunnel becomes more important for the optimization of design and placement of heat and smoke detectors. In order to improve the safety of underground utility tunnel systems, the behaviors of fire-induced smoke flow and temperature distributions are investigated. Especially, two different cross-sectional shapes of tunnel, such as rectangular and circular types are modeled. Also, fire source is modeled as a volumetric heat source. Three-dimensional thermal-flow characteristics in an underground tunnel are solved by means of FVM using SIMPLE algorithm. The effects of shape geometry on the fire-induced flow characteristics are graphically depicted. It is desirable that heat and smoke detectors are installed on the cables and the top of the wall.

A Numerical Study on Effects of Flow Through Openings on Convection (개구부의 유동이 대류에 미치는 영향에 관한 수치연구)

  • 박외철;이경아
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2000
  • The finite control volume method was utilized to investigate the effects of flow through openings on convection in an enclosure. Flow patterns and temperature distribution were compared for non-dimensional inflow velocity U=20, 40, 60 at Ra=$10^4$ and $5\times10^4$, respectively. The inflow velocity influenced temperature distribution in the enclosure significantly and lowered temperature on the top wall. The flow through openings forced the position of the highest temperature on the top wall to move toward the outflow opening.

  • PDF

Flow Characteristics of Fire Whirl for Different Heat Release Rate (발열량의 차이에 따른 Fire Whirl의 유동특성)

  • Bae, Sung-Yong;Sung, Kun-Hyuk;Ryou, Hong-Sun;Hong, Ki-Bae;Kim, Dong-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.609-613
    • /
    • 2008
  • The fire whirl occurring by the instability of atmosphere is a rare phenomenon, but highly destructive because it has high inhalation and lift force, caused by the rotating velocity. And it is difficult to extinguish the fire, because of increment of the spread rate with the flame height. In this study, for investigation of the flow characteristic of fire whirl for various heat release rate, numerical analysis is performed in same conditions with experiments, using the FDS which is developed at NIST. For validating of the numerical study, the results are compared with the experiment. The result shows that the relation between the characteristic length and the ratio of circulation versus the buoyancy force is $z_f$/D$^{\ast}$ = 0.304(${\Omega}/{\alpha}$)^2 - 1.334${\Omega}/{\alpha}$ + 5.516.

  • PDF