• Title/Summary/Keyword: Fire extinguishing composite

Search Result 6, Processing Time 0.019 seconds

A Study on Extinguishing Concentration of K2CO3-Zeolite Composites (K2CO3가 흡착된 합성제올라이트 구조체의 소화농도에 관한 연구)

  • Kim, Seung-Il;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-47
    • /
    • 2012
  • In the study, fire extinguishing concentration of $K_2CO_3$-Zeolite composite was measured. Zeolite composite is a porous adsorbent which has small particle size, low density and anti-catalytic effect. Scanning Electron Microscopy, X-Ray diffraction and thermal analysis were also conducted to investigate the structural properties of composite. The result showed that despite of weight ratio, the extinguishing concentration of the composite was lower than pure $K_2CO_3$. The extinguishing concentration of $K_2CO_3$-Zeolite composite which has weight ratio of 7 : 3 was 5.72 times lower than that of pure $K_2CO_3$ and 1.1 times lower than that of ABC powder. The SEM and XRD patterns showed that $K_2CO_3$ was adsorbed on the Zeolite properly, and through the thermal analysis, it was founded that the composite is more effective extinguishing agent than pure $K_2CO_3$.

The Effect of Epoxy Resin on the Properties of Encapsulated Fire Extinguishing Agent (캡슐화된 소화약제의 물성에 대한 고분자 매트릭스의 효과)

  • Alexandra, Sertsova;Sergei, Krasilnikov;Lee, Sang-Sup;Kim, Jong-Sang.
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.19-27
    • /
    • 2019
  • Fire extinguishing composite materials based on low-viscosity epoxy resin (EP) and containing 50 wt% of encapsulated fire extinguishing agent (EFA) have been studied. The positive effect of the EP on the kinetics and temperature of the EFA decapsulation was established. The EP increases the decapsulation temperature of the EFA from 130 ℃ to 155 ℃ and changes the kinetics of the decapsulation. The epoxy matrix increases the thermal stability of the EFA more than 3.9 times compared to that of the pure EFA. The protective effect of the EP on the storage stability of the EFA was validated. The mass loss of EP-containing EFA at 60 ℃ and 80% humidity over 96 h is 0.4%. The mass loss of pure EFA under the same conditions is 15%. A similar effect was observed under ultraviolet radiation: the EP-containing EFA loses 0.8% at pure EFA mass of 6%. The testing of alternative polymer matrixes has been considered.

Automatic Fire Extinguisher Having Flammable Pipes Inserted in a Cultural Assets Roof (가연성 파이프 시공에 의한 전통가옥지붕에 매설된 자동소화장치)

  • Cho, Taejun;Kim, Jae-Jun
    • The magazine of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.26-31
    • /
    • 2014
  • This invention is purposed to provide an innovative solution for the inside of roof structures, which is cultural assets. The Asian old houses generally have several layered roofs on top of the structures. If a fire has started inside of the roof, it is hard to be extinguished before eliminating all the upper layers of the roof. This invention provides pre constructed embedded pipes, which is flammable and easy to be dissolved by the fire. The material of pipe is composed of rubbers, of which the combustion point is so low that the extinguishing of initial fire is possible without additional fire service. The inside of pipe is filled with halon gas. If the filled gas is consumed after ignited by fire, additional fire extinguishing water is supplied. If the flexible pipes are totally combusted by a big fire, the sprinkler at the end of inflexible pipe will work continuously, which is located between flexible and inflexible pipes. The extinguishing pipe network is suggested as dividing whole roof as multiple sections for a swift fire extinguishing in case of intentional or natural fire attack to our invaluable cultural assets.

  • PDF

A Study on Railway Vehicles Fire Detection using HMI Touch Screen (HMI 터치스크린을 이용한 철도차량용 복합화재수신기 개발 연구)

  • Park, In-Deok;Kim, Chang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Recent social needs for promoting traffic safety increased and the demand social security in economic, increasing the demand for environmentally friendly rail transport. In particular, when train express such as to secure reliability KTX(Korea Train eXpress) from potential disaster(fire) in the train operation caused by the train express running has been very important. Railroad fire extinguishing system is operated to fire exploding before reaching the flashing point more important than early to quickly detect because of CAN(Controller Area Network) communication to fire suppression and fire receiver, interface, fire fighting equipment from HMI((Human Machine Interface) and fire high-performance to research and development for intelligent composite fire receiver is required.

Experimental Study to Estimate the Required Flow of Fire Extinguishing System for Flame Spread Prevention on Composite Panel (복합패널 화재확산 방지를 위한 소화시스템의 소요유량 산정을 위한 실험적 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.33-39
    • /
    • 2017
  • Composite panel refers to the particular plywood produced in a way of stacking the different kinds of material in sandwich form and adhering them using adhesives and is widely used as building material for its constructability and cost efficiency. But as the surface is finished with steel plate, fire extinguishing agent cannot reach to the core material because of such steel plate on surface which causes the difficulties in suppressing the fire as well as in fire-fighting activities due to collapse. This study, to deal with such problem, is intended to set the fire pipe in core material to prevent the fire from spreading and in a bid to achieve this using minimized fire water, water supply test device was fabricated to estimate the required water flow of fire extinguisher and consequently, optimal water flow (0.5 L/min) was determined through a full-scale fire test.

A Study on the Large Experiments (ISO 13785-2) for Vertical Fire Behavior Analysis of Aluminum Composite Panels in General and Flame-retardant Material (일반재와 난연재 알루미늄복합패널의 수직화재 성상분석을 위한 실대형시험(ISO 13785-2)에 관한 연구)

  • Choi, Chui-Kyung;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.92-98
    • /
    • 2012
  • In this sturdy, large experimental (ISO 13785-2) was performed to analyze the building materials used in fire retardant materials for aluminum composite panel and in general properties. As a results, maximum temperature in the case of the general materials was measured in 210 seconds $1,021^{\circ}C$, the retardant materials was measured in 1,200 seconds early $1,190^{\circ}C$. The retardant material of aluminum composite panel, Fire behavior if the ignition is slow and the general materials in aluminum composite panel, fire ignition and combustion at the same time was growing rapidly. The general materials and flame-retardant material of aluminum composite panel was an obvious difference to the combustion ignition but after ignition combustion mode showed a similar pattern of the rapidly vertical spread of flame. The results of this study, in order to reduce the risk of aluminum composite panels for fire and the retardant materials used for ignition the slow should be actively encouraging. Also after the ignition, there is an urgent need to put out a fire in exterior materials for extinguishing facilities.