• Title/Summary/Keyword: Fire explosion

Search Result 637, Processing Time 0.022 seconds

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

A Study on How to Evaluate Appropriate Ventilation Rate of Indoor Facility Handling Hazardous Substances by Their Flammable and Explosive Properties (유해화학물질을 취급하는 실내시설에서의 인화폭발성에 따른 적정 환기량 산정에 대한 연구)

  • Mansu Park;Cheong-Min Seo;Hyo-Soub Yoon;Kyoshik Park
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.293-301
    • /
    • 2024
  • Purpose: Ministry of Environment statistics reveals more than 132 fire·explosion accidents in South Korea between 2014 and 2023. Among them, fire and/or explosion accidents are very impactive in their scale and consequence. This study aims to suggest a new method of reasonable way to calculate the ventilation rate of indoor facility handling hazardous chemicals based on their inflammability. Method: A new method to calculate the ventilation rate is based on the physicochemical properties of the chemicals handled, which is more reasonable compared with the current regulation based only on the floor area of the facility. Result: Considering the physicochemical properties, 178 chemicals based on their inflammability were studied and 168(94%) met the criteria for the current regulation. Some materials have been shown to require too much or too little ventilation rate. Conclusion: Through this study, a reasonable method of calculating the required ventilation rate was proposed. This should be applied to ensure the safety of workers to deal chemicals.

Fire Patterns According to the Blood Hb-CO Concentration of Charred Bodies (소사체의 혈중 헤모글로빈-일산화탄소 농도에 따른 연소형태 연구)

  • Choi, Seung-Bok;Oh, Bu-Yeol;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-48
    • /
    • 2012
  • Fire patterns have been used to determine the origin and cause of fires in every setting imaginable. However, it is very difficult to identify fire patterns and causes from the fire-damaged remains of a devastated structure. If someone was killed by the fire, it is possible to identify fire patterns by analyzing the Hb-CO concentration in charred bodies of deceased as well as the pace of the fire. For example, a low level of Hb-CO concentration in the charred bodies indicate a rapid fire with accelerants and the death was caused by severe heat and thick toxic fumes. However, a high level of Hb-CO concentration in the charred bodies demonstrates that the fire was slow and/or there was a flameless form of combustion. Thus, it is possible to identify fire patterns through analyzing the level of Hb-CO concentration on the dead from the fire. In this study, the Hb-CO concentration in the charred bodies was from 3 % at the case of gas burning oneself to death to 93 % at the death caused by smoldering fire.

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.

Suggestions for Safety Improvement of CNG Bus Based on Accident and Failure Analysis (CNG버스 사고원인 분석에 근거한 안전성 향상 방안에 대한 연구)

  • Yoon, Jae-Kun;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.69-76
    • /
    • 2008
  • Three failure cases of CNG composite vessels were reported since after January 2005. The 1st and 2nd accidents were indebted to vessel defect and installation mistake. The 3rd was caused by gas leak at pipe connections. In this paper various aspects were studied based on information of the three failure analysis, which must be improved for better safety of the CNG bus system. Overpressure region caused by vessel explosion was theoretically predicted and also assessed by PHAST program. Explosion of 120 l vessel under 20 MPa is equivalent to 1.2 kg TNT explosion. The predicted value by PHAST was more serious than theoretical one. However, actual consequence of explosion was much less than both of the predicted consequences. Since the CNG vessel was designed by the performance based design methodology, it is difficult to verify whether the required process and tests were properly conducted or not after production. If material toughness is not enough, the vessel should be weak in brittle fracture at early in the morning of winter season since the metal temperature can be lower than the transition temperature. If autofrettage pressure is not correct, fatigue failure due to tensile stress during repeated charging is possible. One positive aspect is that fire did not ocurred after vessel failure. This may be indebted to fast diffusion of natural gas which hindered starting fire.

  • PDF

Fire Safety evaluation of High Pressure Hydrogen System for FCEV (연료전지차량용 고압수소저장시스템의 화재 안전성 평가)

  • Choi, Young-Min;Jang, Gyu-Jin;Kim, Sang-Hyun;Hang, Ki-Ho;Hang, In-Cheol;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • Fuel cell vehicles are equipped with Pressure Relief Devices(PRDs) installed in pressure tank cylinder to prevent the explosion of the tank during a fire. PRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. But if the PRD does not actuate, because either the PRD fails or can't be surrounded by the flame of a fire, the tank will rupture and produce a blast wave and hydrogen fire ball. In this paper, we observed the fire behavior of actual fuel cell vehicle, comparing with that of gasoline vehicle.

Prediction and Measurement of Flash Point and Fire Point of Aromatic Hydrocarbons (방향족탄화수소의 인화점과 연소점 측정 및 예측)

  • Ha Dong-Myeong;Han Jong-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.21-26
    • /
    • 2005
  • The flash points and the fire points are one of the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable substances. In this study, the flash points of aromatic hydrocarbons, were measured by using Pensky-Martens Closed Cup apparatus(ASTM-D93) and Tag Open-Cup apparatus(ASTM D 1310-86). Also the fire points of aromatic hydrocarbons, were measured by using Tag Open-Cup apparatus. The measured flash points were in good agreement with reference values. The measured fire points compared with the estimated values based on 1.23 times stoichiometric concentration. The values calculated by the proposed equation were in agreement with measured values.

  • PDF

Dynamic Response of Drill Floor to Fire Subsequent to Blowout

  • Kim, Teak-Keon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.

A Study on the Characteristics & Fire Hazard of Electric Range (전기레인지의 특성과 화재 위험성에 관한 연구)

  • Lee, Jung-Il;Ha, Kag-Cheon;Kim, Ji-Myong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.380-390
    • /
    • 2019
  • Purpose: Recently, in addition to increase in the use of electric ranges, fires have also been increasing. Method: To find out the fire risk of induction and highlights range, looked at the structure and operation methods. Combustion tests, heat transfer tests, and ignition tests were performed on both types. Results: The highlight electric range burned the towel two minutes later, takes about 25 minutes for the residual heat to cool down after cooking, and the energy of the red color disappeared in three to four minutes and no sparks were seen. Conclusion: Experiments have shown that burn and fire hazards exist, especially if there is cracks in the top, there is a risk of fire and explosion.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.