• Title/Summary/Keyword: Fire evacuation

Search Result 703, Processing Time 0.023 seconds

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Study on the Effect of Toxic Gas Filter Effect of Wet Towel during Fire (화재 시 젖은 수건의 유독가스 필터 효과에 관한 연구)

  • Sim, Jaeung;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.52-56
    • /
    • 2018
  • The damage caused by fires is fatal as opposed to the damage caused by heat, and toxic gas generated by fires can be protected against by using a wet towel. In this study, we quantified the filtration effect of gas generated by an actual fire using a wet towel. In order to confirm the filtration effect of the wet towel on three harmful gases ($CO_2$, HCl, HCN), gases passed through a filter using FT-IR were analyzed in realtime. HCl and HCN, which are gases, were filtered by a wet towel, and the detection time of each gas was delayed. Therefore, it was confirmed that evacuation time can be secured by using a wet towel in the case of toxic gas, especially water-soluble gases in an actual fire.

Effect of Positive Pressure Ventilator Tilting Angle on the Flame Suppression and Smoke Density (Positive Pressure Ventilator 경사각 변화에 의한 화염억제 효율과 연기농도 변화)

  • Kim, Sung-Won;Lee, Kyoung-Duck;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.135-142
    • /
    • 2006
  • The experiment applied Positive Pressure Ventilation to rapidly exhaust heat and smoke inside the construction in the fire was done. Changes of heat discharge and smoke density were measured, with the various blowing condition like a fan tilting angle to find the effect of the parameter. Experimental apparatus were with PPV and water mist system for better efficiency, and investigate the effect of heat discharge and smoke removal. In the experiment, flame temperature has decreased when PPV was applied. Smoke density, generated from fire also decreased dramatically and the efficiency showed the highest rate at $0^{\circ}$ tilting angle. In addition, combination of PPV and water mist system highly improved the efficiency of evacuation on heat and smoke density, clearly was influenced by the tilting angle.

A Study on Improvement Way of Fire Simulation Modelling Field through Analysis of Performance-Based Design Reports of High-rise Residential Complex Building in B Metropolitan City (B도시지역 고층 주상복합건축물 성능위주설계도서 분석을 통한 화재 시뮬레이션 분야 개선방안에 관한 연구)

  • Seo, Min-Ji;Lee, Yang-Ju;An, Sung-Ho;Hwang, Cheol-Hong;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, in Korea, construction of high-rise buildings has been rapidly increasing. Therefore, in order to minimize the loss of life and property in the event of a fire, "performance-based design" which requires performance equal to or better than current regulations is obligatorily required. However, in the field of fire and evacuation simulation, which occupies a large part in the performance-based design, detailed technical guidelines have not yet been established. Therefore, various designers are proceeding with the computer simulation modelling by referring to the design report book previously performed. Especially, in the case of the fire simulation, according to the judgment of a designer the scenario type is selected and the input values is set. Even if the building is used for the same purpose, it is true that the result can be different depending on how and who designed it. Therefore, in this paper, we have investigated the fire scenarios type and scenarios input values by randomly examining 7 preliminary reports of performance-based design in B metropolitan city. We also propose the improvement strategy for fire simulation and lay the groundwork for establishment of technical guidelines for fire simulation for performance-based design.

Characteristics of Thermal and Fluid Flows for Different Fire Locations in Underground Combined Cycle Power Plant (화원 위치에 따른 지하 복합 발전 플랜트 내 열유동 특성 연구)

  • Sung, Kun Hyuk;Bang, Joo Won;Lee, Soyeong;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.716-722
    • /
    • 2017
  • The present study numerically investigates the effect of obstacles located in the trajectory of fire plume flow on heat flow characteristics by using Fire Dynamics Simulation (FDS) software in an underground combined cycle power plant (CCPP). Fire size is taken as 10 MW and two different locations of fire source are selected depending on the presence of an obstacle. As the results, when the obstacle is in the trajectory of fire plume, hot plume arrives at the ceiling about 5 times slower in the upper of the fire in comparison to the results without obstacle. In addition, the average propagation time of ceiling jet increases by about 70 % with the distance from the ceiling in the upper of the fire, and it increases mainly about 4 times at the distance of 10 m. Consequently, it is noted that the analysis of heat flow characteristics in the underground CCPP considering fire scenarios is essential to develop the fire detection system for initial response on evacuation and disaster management.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

A Study on Required Safe Egress Time (RSET) Comparison and Error Calculation in Relation to Fire Room Range Set Conditions of Performance Based Fire Safety Designers (성능위주설계자들의 화재실 범위 설정 방식에 따른 소요피난안전시간(RSET) 비교 및 오차산정에 관한 연구)

  • Baek, Sona;Choi, Jun-Ho;Hong, Won-Hwa;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • The Installation, Maintence, and Safety Control of Fire-fighting Systems Act of South Korea regulates that over 30-storey high-rise buildings including underground spaces should vitally perform the Performance-based Design to minimize property damage and personal injury as a fire risk assessment in advance. Therefore a PBD designer such as a fire safety professional engineer evaluate occupant's life safety by a scientific methodology. In order to evaluate the life safety, fire safety designers calculate the Required Safety Egress Time (RSET) which does not have the legal criteria regarding the standard method of calculation yet. So this way has been showing different results depending upon the designer's choice, knowledges and experiences. In this study, RSET calculation methods by six designers respectively were analysed from the thirteen reports of real performance based design projects conducted in Busan for a last five years. In particular, the Response Time calculation methods which have the most powerful effect for figuring the RSET are compared with the other designer's to deduce an error value.

Effect of Apartment Residents' Safety Awareness on Fire Response Performance: Focusing on the Moderating Effect of Control Offices' Control Competence (아파트 거주자의 안전의식이 화재대응성과에 미치는 영향 : 관리사무소의 관리역량 조절효과를 중심으로)

  • Kim, Jong-Nam;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • The purpose of this study is to reduce the anxiety factors of fires by following evacuation tips in case of fire in an apartment household. This study analyzed the moderating effects of the control offices' competence in control on safety awareness and fire response. The study results were as follows. First, the residents and control staff's safety awareness had a positive effect on the fire response performance. This indicates that the higher the residents and control staff's safety awareness level, the higher the fire responsive performance. Second, the higher the control offices' control competence level, the better the apartment residents and control staff's safety awareness had a positive effect on the fire response performance. These results indicate that the higher the control office heads' leadership, the higher the apartment residents' housing satisfaction and that the more communicative the control office heads' attitude toward the residents, the better their attitude had a positive effect on the fire response performance. Lastly, the control offices' control competence was analyzed to have a moderating effects on the effect of the apartment residents and control staff's safety awareness level on the fire response performance. These results showed that the change in the model's R2 value showed an increasing trend in stages as the value increased more in the stage 2 than the stage 1 and even more in the stage 3 with the interaction terms of the moderating variables added. For this reason, the control offices' control competence which was a moderating variable was analyzed to have a moderating effect on the effect of residents and control staff's safety awareness level on the fire response performance.

The study on the operation of fire fighting vehicle for a long railway tunnel (장대터널용 소방차량의 운용에 관한 연구)

  • Kwon, Tae-Soon;Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.516-521
    • /
    • 2016
  • In this study, we investigated the operation of railroad fire fighting vehicles against fires on trains in a long railway tunnel. In recent years, long railway tunnels (more than 10 km in length) have been built and the number of such tunnels, such as the Geumjeong tunnel (20.3 km in length) on the Gyeongbu high speed line, Solan tunnel (16.7 km in length) on the Yeongdong line and Yulhyeon tunnel (50.3 km in length) on the Suseo high speed line which is scheduled to be opened in the second half of 2016, is increasing. Significant damage is to be expected, due to the increased evacuation time and limited accessibility of fire services when the train is stopped by an urgent fire in the tunnel. Special fire fighting vehicles capable of running on rails have been developed and operated in overseas advanced countries. Therefore, a fire-response system using Unimog vehicles, which can run on road and rail, instead of road vehicles, is necessary. The characteristics of the railway tunnel and thermal environmental change caused by a train fire in a tunnel were analyzed in this study. Also, the operational requirements of the railroad fire fighting vehicles were evaluated by taking into account the specifications of the railroad fire fighting vehicles under development.

Analysis of Ambivalence Differences among Groups for Temporary Firefighting Facilities of Workers at Construction Sites (공사현장 근로자의 임시소방시설에 대한 집단 간 Ambivalence 차이분석)

  • Moon, Pil-Jae;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.765-778
    • /
    • 2021
  • The purpose of this study is to prevent fire accidents in advance by deriving prior knowledge among groups about temporary fire-fighting facilities of workers at construction sites and devising appropriate improvement measures. The findings are as follows.First, in the case of fire extinguishers, statistical attention was paid to the contractor, supervisor, partner worker and fire extinguisher manager between designations. 87% of fire managers and 70% of facility supervisors said fire extinguisher management managers needed to be designated for each type of construction, which requires designation of fire extinguisher management managers, frequently checking and relocating. Second, in the case of simple fire extinguishing facilities, statistical attention was paid to the application of penalties for unauthorized use of fire extinguishing facilities with construction companies, supervisors, and business partners.Third, in the case of emergency alarm measures, statistical attention was paid to the application of emergency alarm sound to temporary broadcasting facilities with construction works, supervisors, and business partners.Fourth, in the case of induction, statistical attention was paid to the application of connection between construction works, supervisors, and partner workers, such as passage guidance, emergency lighting, etc.It was found that 65% of construction workers and 55% of electrical workers had different applications such as aisle guidance and emergency lighting for each type of business partner. In order to resolve blind spots such as evacuation zone guidance due to the structure of the building, it is necessary to easily distinguish the direction of the entrance door from a long distance by applying it in conjunction with passage guidance lights and emergency lighting.