• Title/Summary/Keyword: Fire damaged RC

Search Result 27, Processing Time 0.022 seconds

Spatting and Fire Enduring Properties of High Strength RC Column Subjected to Axial Load Depending on Fiber Contents (중심 축하중을 받는 고강도 RC기둥의 섬유 혼입량에 따른 폭열 및 내화 성상)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Jae-Sam;Kim, Kyoung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.83-90
    • /
    • 2006
  • This paper investigates experimentally the fire resistance performance and spatting resistance of high performance reinforced concrete column member subjected to fire containing polypropylene fiber(PP fiber) and cellulose fiber(CL fiber). An increase in PP fiber and CL fiber contents, respectively resulted in a reduction of fluidity due to fiber ball effect. Air content is constant with m increase in fiber content. Compressive strength reached beyond 50 MPa. Based on fire resistance test, severe failure occurred with control concrete specimen, which caused exposure of reinforcing bar. No spall occurred with specimen containing PP fiber. This is due to the discharge of internal vapour pressure. Use of CL fiber superior to control concrete in the side of spatting resistance, localized failure at comer of specimen was observed. Corner of specimen had deeper neutralization than surface of specimen. Specimen containing PP fiber had the least damaged area due to spatting. Neutralization depth ranged between 6 and 8 mm Residual compressive strength of specimen containing PP fiber maintained 40%, which is larger than control concrete with 20% of residual strength. Specimen containing CL fiber had 25% or residual strength.

Parametric Analysis of High-Strength Reinforced Concrete Beams at High Temperature

  • Choi Eun Gyu;Kang Ji Yeon;Shin Mi Kyung;Shin Yeong Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.585-590
    • /
    • 2004
  • An analytical method is proposed for the analysis of the reinforced concrete flexural beam subjected to high temperature. The analysis procedure for the material properties, in this study, is subdivided into two types; thermal properties for temperature distribution analysis and mechanical properties for structural analysis. Using F.D.M. and segmentation method, the program was made to predict the thermal behavior of RC beams during heating. In previous studies, the structural behavior of fire damaged RC beams was investigated though experiments. Comparing the result by program to the one by experiment, the comparison indicated that the proposed segmentation method for the thermal respose analysis present fairly a good agreement with experiment.

  • PDF

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture (잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF

The Engineering Properties of Concrete Exposed at High Temperature (고온을 받은 콘크리트의 공학적 특성)

  • 권영진;김용로;장재봉;김무한
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • The purpose of this study is to present data for the reusing, rehabilitation and estimation of safety of RC structure damaged by fire, and for the prevention of explosive spatting by investigation the properties of explosive spalling, compressive strength and ultrasonic pulse velocity according to kinds of fine aggregate, admixture and water-cement ratios. In explosive spalling properties with kinds of aggregate, explosive spalling does not appear or little at surface in the case of used sea sand, but the case of using recycled sand or crushed sand is worse and worse. Property with the kind of admixture does not appear specially. And high strength concrete with W/C 30.5% was taken spalling, but 55% does not appear. It is found that residual compressive strength after exposed at high temperature showed 45% in W/C 55%, and 64% in W/C 30.5% of its original strength averagely. Ultrasonic pulse velocity is different with kinds of aggregate. W/C. and heating time. When 3 month age after heating ultrasonic pulse velocity is recovered abut 1.3%~8.4% of its 1 month age after heating.

An Experimental Study on the Residual Compressive Strength of PCM Depending on Temperature Variations (온도변화에 따른 폴리머 시멘트 모르타르의 잔존압축강도 특성에 관한 실험적 연구)

  • Seo, Dong-Goo;Koo, In-Hyuk;Yoon, Ung-Gi;Kim, Bong-Chan;Kim, Hyung-Jun;Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.483-489
    • /
    • 2015
  • The Purpose of this study was to establish the basic data on the mechanical properties of PCM in the high temperature range. To this end, an experiment was conducted on the characteristics of the residual compressive strength by temperature (100, 200, 400 and $600^{\circ}C$) with a fixed temperature heating. An after heating test was performed to investigate the properties after fire damage. The result showed that the residual compressive strength of PCM had a tendency to decrease, regardless of the type of polymer. It was also found that when the contents were low, the residual compressive strength started to greatly decrease from the high temperature range of $400^{\circ}C$, and that the specimen containing PAE showed a steeper slope than the specimen containing EVA. However, since little studies have been conducted on the mechanical properties of PCM with the high temperature, it is considered that, in addition to this study, basic studies must be preceded, including studies on the repairing methods.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.