• Title/Summary/Keyword: Fire damage range

Search Result 63, Processing Time 0.022 seconds

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.

An Experimental Study on the Residual Compressive Strength of PCM Depending on Temperature Variations (온도변화에 따른 폴리머 시멘트 모르타르의 잔존압축강도 특성에 관한 실험적 연구)

  • Seo, Dong-Goo;Koo, In-Hyuk;Yoon, Ung-Gi;Kim, Bong-Chan;Kim, Hyung-Jun;Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.483-489
    • /
    • 2015
  • The Purpose of this study was to establish the basic data on the mechanical properties of PCM in the high temperature range. To this end, an experiment was conducted on the characteristics of the residual compressive strength by temperature (100, 200, 400 and $600^{\circ}C$) with a fixed temperature heating. An after heating test was performed to investigate the properties after fire damage. The result showed that the residual compressive strength of PCM had a tendency to decrease, regardless of the type of polymer. It was also found that when the contents were low, the residual compressive strength started to greatly decrease from the high temperature range of $400^{\circ}C$, and that the specimen containing PAE showed a steeper slope than the specimen containing EVA. However, since little studies have been conducted on the mechanical properties of PCM with the high temperature, it is considered that, in addition to this study, basic studies must be preceded, including studies on the repairing methods.

A Study on the Development of Fire Alarm System with Evacuation Lighting and Voice Alarm Functions (피난조명 및 음성경보 기능을 내장한 화재경보시스템 개발에 관한 연구)

  • Lee, Gun-Ho;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.25-34
    • /
    • 2018
  • This study investigated the development of a fire alarm system with evacuation lighting and voice alarm functions. The performance of a fire detector and system with independently built-in evacuation lighting and voice alarm functions was confirmed for early recognition of fire and to allow visibility of the evacuation route in the event of fire. This new system satisfied model recognition and product testing technological standards with 1.62 lx average illumination, 89.7 dB average sound and 86.1 dB average voice. From additionally testing the evacuation performance of this new system, it was confirmed that the evacuation time decreased by 63.08% to 67.82% under the experimental conditions compared to conventional systems. The new system can minimize fire damage by setting off voice alarms to prevent failure of fire recognition and by flashing emergency lighting to secure the minimum required visibility range for evacuation. Therefore, it is considered that it will be utilized as a fire alarm system with appropriateness and usefulness by considering people with hearing or visual impairment.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (화재시 하중재하에 따른 콘크리트의 열적특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Jung, Jae-Young;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.66-74
    • /
    • 2009
  • When a fire occurs, the concrete structure's strength decreases by the increasing temperature under the fire in certain condition of constant load. And, the ratio of the axial force is changed by such decreased strength so that the structure is deformed. In this research, considering such case, we have conducted an actual fire test for the concrete lining with constant loading condition and various fire conditions. The specimen adopts the shape condition for small practical specimen defined by the EFNARC and we used 24MPa, 40MPa and 50MPa to analyze the thermal properties by the strength. The ratio of loading is imposed by a certain loading condition based on 20% and 40% of the sectional stress in concrete and MHC Fire is selected to realize the thermal impact of the concrete by rapid increasing temperature. As the result of the experiment, in the same ratio of loading, the 50MPa specimen shows more cracks and spalling as time goes on. The area damaged by the fire, according to the functional criteria of the concrete lining under the fire in ITA, does not satisfy with the standard in lack of 50mm depth from the heating surface at total 200mm lining.

A Study on Fire Explosion Characteristics via Physico-chemical Analysis of Petroleum Residues (석유 부산물의 물리화학적 분석을 통한 화재폭발 특성연구)

  • Kim, Hyeonggi;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.556-561
    • /
    • 2019
  • In this study, the physical and chemical analyses of petroleum residues (pyrolized fuel oil, PFO) were conducted and major components were selected to investigate their fire and explosion characteristics. Major component distribution areas of the PFO were identified via the GC-SIMDIS and MALDI-TOF analyses. In addition, the qualitative analysis of major component distribution areas was performed by GC-MS analysis. Major components of pyrolysis residue were selected based on the results of various analyses such as EA, SARA and TGA. As a result, benzene, toluene and xylene were selected as major components. Finally, the process hazard analysis software tool (PHAST) analysis was performed to investigate the range of maximum damage effect in case of fire and explosion. Toluene presented the highest risk due to the radiation effect of $227kW/m^2$ and 118 m in the case of jet fire. Xylene and benzene showed the maximum radiant heat values of 114 and $151kW/m^2$, respectively. It was also confirmed from the analysis of pasquill stability and wind speed that the radiant heat increased up to 55% according to wind speed in benzene, which was considered to be a main factor increasing the influence range.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

A Study on the Damage Range of Chemical Leakage in Polysilicon Manufacturing Process (폴리실리콘 제조 공정에서 화학물질 누출 시 피해범위에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.55-62
    • /
    • 2018
  • There is growing interest in solar power generation due to global warming. As a result, demand for polysilicon, which is the core material for solar cells, is increasing day by day. As the market grows, large and small accidents occurred in the production process. In 2013, hydrochloric acid leaked from the polysilicon manufacturing plant in SangJu. In 2014, a fire occurred at a polysilicon manufacturing plant in Yeosu, and in 2015, STC(Silicon Tetrachloride) leaked at a polysilicon manufacturing plant in Gunsan City. Leakage of chemicals in the polysilicon manufacturing process can affect not only the workplace but also the surrounding area. Therefore, in this study, we identified the hazardous materials used in the polysilicon manufacturing process and quantitatively estimate the amount of leakage and extent of damage when the worst case scenario is applied. As a result, the damage distance by explosion was estimated to be 726 m, and the damage distance to toxicity was estimated to be 4,500 m. And, if TCS(Trichlorosilane), STC(Silicon Tetrachloride), DCS(Dichlorosilane) leaks into the air and reacts with water to generate HCl, the damage distance is predicted to 5.7 km.

Damage of Steel Composite Hollow RC SFT under Fires (강합성 중공 RC 해중터널의 화재시 손상도 분석)

  • Seo, JiHye;Han, Taek Hee;Han, Sang Hun;Park, Woo-Sun;Won, Deok Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4626-4633
    • /
    • 2014
  • The research is being conducted on a SFT (Submerged Floating Tunnel), because of increased exchange among nations and abnormal weather-disasters and new transportation infrastructure has attracted interest. However, studies in this are almost in the early stages around the world and various researches will be needed to promote the safety form the disaster. In this paper, heat transfer analysis was applied among the structural performance evaluation of a SFT if afire occurs in the tunnel. The analysis model of the SFT was performed as steel composite RC hollow. The impact of heat by fire under a range of fire scenarios was analyzed and prevention techniques were examined.

A Study on the Minimum Safe Separation Distance from LPG Filling Station (액화석유가스 충전소의 안전거리에 관한 연구)

  • Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-33
    • /
    • 1999
  • The minimum safe separation distances from LPG filling station was discussed in this work based on the accident data from 1987 to 1998 in south korea, the initial damage of accident, and standards of countries. The safety distances are adequate to reduce ignition probability by released gas and provide space for implementation of emergency response after ignition. Therefore, the distances are related to the distance to LFL(Lower Flammable Limit) and the length of jet fire to prevent accident escalation. The range of the distance was suggested in this work to make standard with considering economic, culture, and safe guards.

  • PDF

A study on damage prediction analysis for styrene monomer fire explosion accidents (스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구)

  • Hyung-Su Choi;Min-Je Choi;Guy-Sun Cho
    • Industry Promotion Research
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • This study selected the worst-case scenario for fireball and vapor cloud explosion (VCE) of a styrene monomer storage tank installed in a petrochemical production plant and performed damage prediction and accident impact analysis. The range of influence of radiant heat and overpressure due to fireball and vapor VCE during the abnormal polymerization reaction of styrene monomer, the main component of the mixed residue oil storage tank, was quantitatively analyzed by applying the e-CA accident damage prediction program. The damage impact areas of radiant heat and explosion overpressure are analyzed to have a maximum radius of 1,150m and 626m, respectively. People within 1,150m of radiant heat of 4kW/m2 may have their skin swell when exposed to it for 20 seconds. In buildings within 626m, where an explosion overpressure of 21kPa is applied, steel structures may be damaged and separated from the foundation, and people may suffer physical injuries. In the event of a fire, explosion or leak, determine the risk standards such as the degree of risk and acceptability to workers in the work place, nearby residents, or surrounding facilities due to radiant heat or overpressure, identify the hazards and risks of the materials handled, and establish an emergency response system. It is expected that it will be helpful in establishing measures to minimize damage to workplaces through improvement and investment activities.