• Title/Summary/Keyword: Fire Temperature

Search Result 2,066, Processing Time 0.028 seconds

Comparative study of experimental equations on measurement of fire hight on pool fire (Pool fire에서의 화염의 높이 계산에 관한 실험식의 비교연구)

  • Hwang, Woon-Gi;Kwon, Chang-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • In this study, the height of the flame required to estimate the heat flow path and flame spread in pool fire has been applied by the empirical formula, but it is calculated without applying the pressure and temperature parameters of the fire room. Until now, the height of the flame applied to pool fire was $l_F=0.235Q^{2/5}-1.02D$ in the Heskestad empirical formula, but accurate temperature calculation was not possible due to the temperature and pressure which are not influenced by the flame height. Therefore, applying the temperature and pressure around it can calculate the exact flame height, which can be applied to fire investigation and fire dynamics. The structure of the flame is divided into a continuous flame, an intermittent flame, and a buoyancy flame, but it is assumed that the flame height is calculated from the visual aspect to the intermittent flame region, and the temperature of the buoyancy flame is very low. The effect of heat of vaporization on the height of flame was investigated. The results showed that flame height was different according to the pressure and temperature around the fire room.

A simplified approach for fire-resistance design of steel-concrete composite beams

  • Li, Guo-Qiang;Wang, Wei-Yong
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.295-312
    • /
    • 2013
  • In this paper, a simplified approach based on critical temperature for fire resistance design of steel-concrete composite beams is proposed. The method for determining the critical temperature and fire protection of the composite beams is developed on the basis of load-bearing limit state method employed in current Chinese Technical Code for Fire safety of Steel Structure in Buildings. Parameters affecting the critical temperature of the composite beams are analysed. The results show that at a definite load level, section shape of steel beams, material properties, effective width of concrete slab and concrete property model have little influence on the critical temperature of composite beams. However, the fire duration and depth of concrete slab have significant influence on the critical temperature. The critical temperatures for commonly used composite beams, at various depth of concrete and fire duration, are given to provide a reference for engineers. The validity of the practical approach for predicting the critical temperature of the composite beams is conducted by comparing the prediction of a composite beam with the results from some fire design codes and full scale fire resistance tests on the composite beam.

The Study on the Prediction of Temperature Curve by Compartment Fire Experiment (구획화재실험을 통한 온도 변화 예측 기법 연구)

  • Kweon, Oh-Sang
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.44-51
    • /
    • 2014
  • In this study, the Mock-up office space experiments have been performed for the fire behavior analysis of the compartmented space used for the performance-based fire safety design of buildings. Mock-up test was conducted using the compartmented office space dimensions, which are 2.4 m wide, 3.6 m wide, and 2.4 m hight. Test was conducted with the combustible materials such as a desk, a chair, a computer ect. The fire load in the Mock-up office space was $18.74kg/m^2$. As a result, the temperature of the central compartment space to reach $600^{\circ}C$ were 394 to 408 s. The temperature of the corner near the entrance edge to reach $600^{\circ}C$ were 404 to 420 s. At this study, the temperature curve in the compartmented space has been predicted using the temperature data appling the BFD curve. The BFD curve factor based on the fire tests was determined by the maximum temperature of $900^{\circ}C$, 7 min to reach the maximum temperature, and the shape coefficient of 1.5. The initiating fire was rapidly increased to 9 min, and decreased.

The change in temperature·humidity·perspiration of fire suit when applying phased intensive exercises to fire fighter wearing fire suit (소방공무원의 방화복 착용 후 단계별 운동강도 변화 시 의복 내 온도·습도·발한량 차이)

  • Choi, Seo-Yeon;Park, Il-Gyu;Kong, Il-Chean;Rie, Dong-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.97-103
    • /
    • 2013
  • The purpose of this study was to verify the change in temperature humidity perspiration of fire suit when applying phased intensive exercises to fire fighter wearing fire suit. For this study, three male fire fighters took basic physical test and performed 10 minute phased intensive exercises -exercise intensity I (30%VO2max), exercise intensity II (45%VO2max), exercise intensity III (60%VO2max) based on maximum oxygen consumption (VO2max)- wearing fire suit (helmet, boots, air respirator) in treadmill and took a rest. The result of study shows that the temperature in the suit elevated during stabilization period after each exercise intensity, humidity elevated as exercise intensity increased, perspiration elevated as exercise intensity increased. This study indirectly ascertained the fire suit's physiological change in fire fighters during field activities.

Thermal Characteristics of Fire-Protection Foams Exposed to Radiant Heating (복사열에 노출된 소방용 폼 약제의 열적 특성 연구)

  • Kim, H.S.;Hwang, I.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1570-1575
    • /
    • 2004
  • In order to evaluate the performance of fire-fighting agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams are experimentally investigated. The current research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test for fire-protection foams subjected to fire radiation is developed. This test involves foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of $15^{\circ}C{\sim}20^{\circ}C$. At this point, each trace generally rises to a temperature of approximately $90^{\circ}C$. The temperature gradient in the foam as time passes increases with increased foam expansion ratio. In addition, it is determined that the temperature gradient along the foam for depth decreases with increased foam expansion ratio.

  • PDF

Evaluation of Limiting Temperatures of Rectangular Hollow Sections (각형 강관기둥부재의 한계온도 평가 연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.331-332
    • /
    • 2012
  • Structural steel has been used as a primary materials to columns and beams since 1960's in Korea with an advantages of excellent of load-bearing capacity and design flexibility, and faster construction. However, if the steel columns made of structural steel exposed to fire the load-bearing capacity is going down steadily and finally reach to collapse. Therefore, building regulation requires fire resistance according to building occupation, scales. The fire resistance can be evaluated two categories. One is prescriptive method that is based on building regulation, specification and so on and the other is performance-based fire engineering method. The latter can be designed based on scientific and engineering consequences. The easiest evaluation way using the fire engineering design is comparing to the limiting temperature and maximum temperature calculated based on heat transfer theory. If the limiting temperature of a column exceeds the maximum temperature of it, the column can carry the load during the fire. Therefore, the database of limiting temperature is very essential for evaluation of column. In this paper, to build the database of column made of rectangular hollow sections 8 fire tests with loading were conducted and the relation between the limiting temperature and the applied loads showed in reverse proportion.

  • PDF

A Study on the Temperature Distribution of Thermally Protected Steel column Esposed to the Fire (화재시 내화피복철골기둥의 온도분포에 관한 연구)

  • hyeon, Cheol;Kim, Moon-Han
    • Fire Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • This paper is concerned with the numerical analysis of the temperature of steel columns when they are exposed to flame of a fire temperature curve in order to test resistivity against the fire. In this stuer a 2-dimensional heat conduction FDM was developed to predict the temperature dustribution of steel column under various construction conditions. A proposal to estimate the influence of free water content in the insulation also made.

  • PDF

Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer (CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험)

  • Lim, Jong-Wook;Seo, Soo-yeon;Song, Se-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Park, Hyun-Tae;Bang, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • 김성찬;유홍선;박현태;방기영
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$. Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $^120{\circ}$, and $180^{\circ}$). The global mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhanced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.