• Title/Summary/Keyword: Fire Station

Search Result 491, Processing Time 0.034 seconds

Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation (환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션)

  • Yang, Sungl-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF

A Study on Fire Suppression Measures Used in Wooden Temples (목조 사찰화재의 유형별 진압대책에 관한 연구)

  • Ko, Gi-Bong;Lee, Si-Young;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.10-17
    • /
    • 2012
  • This study classifies the fire suppression measures implemented by wooden temples into four types according to availability of the pump trucks (water tanks) at the fire sites. And this study outlines the strategies and methods based on each type of fire suppression measure. The results show that the fire suppression strategy applied in general buildings is also employed in temples where pump trucks (water tanks) and fire-fighting water are available. For temples where trucks and water are not available, the helicopter, water bag, fire suppression strategy focused on water supply link, automatic transmission system of a fire engine's level by using radio communication network, and water bladder are used. In addition, general four-wheel-drive vehicles equipped with fire fighting tools such as motor pump, hose, nozzle, and water bladder should be deployed in fire stations around the temples. A fire suppression strategy using A-type ladders is also required.

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.

A Study on the Optimization of a Renewable Energy System in Fire Station Buildings (소방서건물의 신재생에너지시스템 최적화에 관한 연구)

  • Lee, Yong-Ho;Hong, Jun-Ho;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • This study set out to evaluate the economy, environmentality, and complexity (economy+environmentality) of fire station buildings of public service facilities and propose ways to apply the optimization of renewable energy system to fire station buildings. As for economy according to life cycle costs, economy increased when the application percentage of the geothermal and solar heat system increased over the three renewable energy system types (geothermal, solar heat, and solar photovoltaic). On the other hand, economy decreased when the application percentage of the solar photovoltaic system increased. As for environmentality according to tons of carbon dioxide, environmentality decreased when the application percentage of the geothermal and solar heat system increased. Environmentality increased when the application percentage of the solar photovoltaic system increased. As for complexity (economy+environmentality) according to the weighted coefficient method, complexity increased when the application percentage of the geothermal system increased. It was highest at the combination of the solar heat system (20%) and geothermal system (80%). On the other hand, complexity decreased when the application percentage of the solar photovoltaic system increased. It was lowest at the combination of the solar photovoltaic system (80%) and geothermal system (20%).

Development of Video Work Manual for Rock-Drill Data In Fire Service (소방에서의 도상훈련 기초자료 영상화작업 매뉴얼 개발)

  • Cho, Jae-Kwan;Park, Hee-Jin;Hwang, Inn;Kwon, Hayrran
    • The Korean Journal of Emergency Medical Services
    • /
    • v.6 no.1
    • /
    • pp.103-128
    • /
    • 2002
  • As a result of trying the various manufacturing methods considering the reality of manpower and equipments with this manual, the following standardized procedures and contents can be suggested. (1) Since tools presenting Rock-Drill data must formalize the order of explanation although explainers are different, it will be valid that it is configured by existing power point method rather than by web document type. Composition of contents are selected on the basis of defence card and survey and then 8 items including initial screen, peripheral conditions, mobilization route, general conditions, use and structure by floor, department of vehicle consideration in activities and end screen are included. (2) Making methods and cautions of data included and used in power point are as follows ; - It was most effective that objects of fire fighting and location of neighboring fire fighting water were expressed by electronic map and drawing of inner building was made by scanning it after paining general architecture drawing(plan by each floor) rather than using drawing tools of EXCEL program or CAD drawing. And it was helpful to simplify contents of architecture drawing to wall, stairs and gate in understanding them. - Photographing of video data should be taken to show available fire fighting facilities in fire, use of planned space and the whole inner structure of each floor from the inside of fire fighting buildings and to display play time between 10 sec. and 1 min, for obstacles to distance from adjacent buildings or passage of special vehicles and fire fighting water from the outside of the building. - File format of video data taken in this way is most suitable to use wmv(window media video) or asf(advanced streaming format) type in consideration of time required for export, screen quality, file capacity and play type in Rock-Drill through network. - Still screen(photo) is more effective to express the department of fire fighting vehicles or other equipments than using video. (3) In configuration work of power point, hyper link was used most and configured to see any part at any situation like web document and then uniformity of presentation order of power point was complemented. (4) In case of sales facilities with the area of $35.557m^2$, the time of 22 hours and 30 minutes for five days was taken with five persons. Therefore, when eight-hour works a day were calculated, the whole process of video work for Rock-Drill can be finished with three day works.

  • PDF

A study on the evaluation of fire safety according to the ventilation mode in a train fire at the subway platform (지하철 승강장에서 열차 화재시 제연모드에 따른 화재 안전성 평가 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • The purpose of this study is to present the most effective smoke exhaust mode by comparing the quantitatively evaluated risks according to the smoke exhaust mode when a train fire occurs in a subway platform. Therefore, applying the typical subway platform as a model, train fire scenarios are developed with the evacuation start time and location of the fire train for each exhaust mode. The fire accident rates (F) are calculated and the number of fatalities (N) was quantitatively estimated by fire analysis and evacuation analysis for each scenario. In addition, the F/N curve compared with the social risk assessment criteria and the following conclusions were obtained. In the event of a train fire at the subway station platform, the evacuation must start up within 600 s in maximum to ensure the evacuees' safety. To secure evacuation safety, it is advantageous to operate the HVAC system of the platform in the air-supply mode at station without TVF. Comparing the F/N curve for each exhaust mode with the social risk criteria, it turned out that the risk significantly exceeds the social risk criteria in case of no mechanical ventilation. As a result, this paper shows that the ventilation mode in which TVF are exhausted and HVAC system is operated in the pressurized mode are the most effective smoke exhaust mode for ensuring evacuation safety.

A Study on the Evacuation Time of the Subway Station (지하역사 승강장 피난시간 분석 연구)

  • Shin, Min-Jung;Kim, Jin-Ho;Kim, Dan-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.214-220
    • /
    • 2011
  • As the number of subway user increases, not only interests in safety increase but also interests in evacuation for a conflagration expand after 'Daegu Subway Fire Disaster' took place. It is necessary to revise the standard of evacuation time and guidelines to guarantee safety of station and platform considering changes in subway environments caused by construction of the deeply underground subway station. Hence this study investigates the current status of the evacuation time of respective station through a site investigation and the results of this study may be utilized as a basic material to calculate an appropriate evacuation time.

  • PDF

Introduction of the Intelligent Health Surveillance System for Urban Transit Station (도시철도 정거장의 종합 건전성 감시시스템 개발방향)

  • Shin, Jeong-Ryol;Ahn, Tae-Ki;Park, Kee-Jun;Kim, Jin-Ho;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1248-1253
    • /
    • 2007
  • Urban transit or subway stations generally service for a long period of several decades. And, the urban transit or subway is public transportation which lots of people takes every day. During the service time, they are inevitably damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. The included damage accumulates and performance degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they result in collapse with the structural failure under extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the intelligent health surveillance system should be researched and developed for ensuring the safety of station. In this paper, the research plans of the intelligent health surveillance system of urban transit station are presented. And also, the development or establishment directions of this system are suggested.

  • PDF

A Study on Temperature Sensor Data Processing For Fire Alarm Database in Smart Building (스마트빌딩내 화재감시용 온도 센서 데이터 처리에 관한 연구)

  • Sim, Hyungsug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.585-588
    • /
    • 2009
  • 건물내의 열을 온도 센서를 통해 모니터링함으로써 발생되는 온도 데이터의 양은 온도 센서의 정밀도가 향상되고 센서의 수가 증가함에 따라 기존의 화재감시시스템이나 공기조화냉동시스템에서 발생하는 것과는 비교할 수 없이 증가하게 된다. 이 과정에서 화재를 감시하기 위하여 유용한 데이터만을 처리해 데이터베이스화하고, 화재 예방에 활용하기 위해 온도 데이터의 효과적인 처리 방법을 연구함으로써 보다 작은 시스템의 구축으로도 안정적인 화재 감시 및 예방이 가능한 방안을 제시한다.

A Study on Temperature Database Design for Fire Prevention System in Smart Building (스마트빌딩내 화재방지용 온도 데이터베이스 구축에 관한 연구)

  • Hyungsug Sim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.292-295
    • /
    • 2008
  • 스마트 빌딩 시스템에서 건물내 설치된 온도센서를 통하여 인식된 온도를 효율적으로 데이터베이스화함으로써 기존 화재방지 설비가 가지지 못한 열이동을 추적할 수 있는 데이터베이스를 구축하게 된다. 이를 통해 화재의 이동을 데이터베이스상에서 추적함으로써 설비를 정확하게 조작할 수 있게 되어 기존의 방식보다 화재방지에 효과적인 데이터베이스 구축이 가능할 것이다. 또 구축된 온도 데이터베이스로부터 화재예방과 관련한 정보를 쉽게 질의처리하여 사용자가 화재 위험요소를 사전 제거하고, 화재방지 시스템의 정상적인 관리를 가능케 할 것이다.