• Title/Summary/Keyword: Fire Simulation

Search Result 1,012, Processing Time 0.031 seconds

Design and Implementation of Adaptive Naval Gun Fire Simulator on a Naval Combat System (함정전투체계의 적응형 모의사격시뮬레이터 설계 및 구현)

  • Kim, Kyubaeg;Jo, Hongkeu;Kim, Dongseong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.630-639
    • /
    • 2018
  • This paper proposes the design and implementation of adaptive naval gun fire simulator on a naval combat system. The proposed simulator can log data, analysis logged data, modify the BCU(Ballistic Computing Unit) S/W in real-time, and evaluate gun fire performance to check it satisfy requirement or not. When the simulation result satisfies the requirement, the BCU S/W is installed on onboard system. The simulation results show that similar result with actual naval gun fire reslult.

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

Parametric Study on Water Mist Nozzles for Fire Suppression System Based on CFD Methods

  • Jung, In-Su;Park, Tae-Gyu;Chung, Hee-Taeg
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Numerical simulation has been performed to investigate the mist flow characteristics through the fire suppression nozzles for the design purposes. The commercial softwares, FLUENT and the fire dynamic simulator, FDS with the proper modelings were chosen as the numerical tools. In order to find optimal conditions in sense of the main performances of nozzles, the spray characteristics were analyzed both inside and outside of the nozzles. Geometric factors of the injecting orifices, i.e., diameter and chamfered angle were chosen as the simulation parameters for design application. From the present numerical results, 1.0c nozzles, whose orifice-diameter was 1 mm, having the chamfered angles were shown as the best performance of the fire suppression.

Study on Flow and Smoke Behaviors on in Longitudinal Tunnel (장대 터널에서의 배연방식에 따른 기류 및 연기거동 연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Jeong-Hak;Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1521-1527
    • /
    • 2009
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

Causes of the Fire at an Indoor Shooting Range in Busan

  • Park, Woe-Chul;Lee, Nae-Woo;Jeong, Lee-Gyu
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • On-site examinations and fire simulation were carried out to speculate on causes of the fire at an indoor shooting range in Busan. An experiment on the ignitability of unburned gunpowder was also conducted. Cigarette was the most likely source of ignition for the fire, while impact of a stray bullet failed to ignite the unburned gunpowder. The explosion in the shooting area was presumed to be caused by violent combustion of the polyurethane foam and unburned gunpowder accumulated on it. Fire safety measures include prohibit of use of profile polyurethane foam, complete clean-up of unburned gunpowder, and removal of steel components from the bullet trap.

A Numerical Study on the Smoke Control in Side-Platform Type Subway Station Fires (상대식 지하철 역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 205 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $20\;^{\circ}C$. 20 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the side-platform type subway station in case of a train fire. Temperature and CO concentration were lowered by the operation of smoke extraction system.

Fire Simulation Study and Tunnel Ventilation of Requirement in the Longitudinal Tunnel. (In Yimgo-4th Tunnel) (종류식 터널내 소요 환기량에 의한 터널환기 및 화재 시뮬레이션 연구 ( 임고 4 터널 ))

  • Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1378-1385
    • /
    • 2008
  • This study is aimed to analyze the flow patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

A Safety Analysis on the Fire Endurance of Concrete Structures (화재에 대한 콘크리트구조물의 안전성 해석)

  • Bang, Myung-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • Fire disasters have frequently happened in concrete structures, which resulted in severe structural damages and unsafety. In this case, the method which had evaluated the safety of damaged structures was often unaccepted from most of stakeholders and engineers. The objective of this study is to develope the procedure and method to be able to determine the safety. Numerical simulation was applied to produce the maximum temperature and temperature distribution. Nextly, temperature propagation analysis was performed to plot temperature gradients at each depth and location. The material strength curve versus temperature was applied to determine the safety of concrete structures damaged by fire. The maximum temperature should be calibrated considering real fire records ; magnitude, intensity, situation etc. The results shows that the selected procedure and method was applicable and practical.

A Numerical Study on the Smoke Control in Center-Platform Type Subway Station Fires (섬식 지하철역사내 화재시 연기제어에 관한 수치해석적 연구)

  • Lee, Sung-Ryong;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.313-318
    • /
    • 2007
  • In this study, numerical simulations were carried out to analyze the effect of the smoke extraction system and fire shutters in subway station fires using FDS 4.0. Subway station used in the experiment was 145 m long. Simulation results are validated by comparing with experimental results. Simulation results showed good agreement with experimental results within $10^{\circ}C$. 10 MW polystyrene was used as a fuel in the numerical prediction. Numerical predictions were performed in the center-platform type subway station in case of a kiosk fire. Temperature and CO concentration were lowered by the operation of smoke extraction system. But, the operation of fire shutters had little effect on temperature and CO concentration in the platform level.

A COMPUTER SIMULATION MODEL AS A MEANS OF EMERGENCY EVACUATION TRAINING FOR CONSTRUCTION PROJECTS

  • Chung-Suk Cho;Dong-Cheol Shin
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.864-868
    • /
    • 2009
  • Fire safety management on any construction site should start with recognizing fire risks in the workplace, understanding the extent of the risks, and proper assessment of the controls necessary to reduce the risks. However, the most important step to prevent fire-related accidents on jobsites is the constant review and monitoring of processes and controls by all individuals involved. This study was conducted to analyze the effectiveness of using computer simulation as an addition to maps or floor plans in safety training and management. Simulex was used on a real project to model various egress routes and to identify potential problem areas of the evacuation strategy. This study highlights the efficacy of simulated emergency evacuation as a training tool that visually shows constantly altering means of egress.

  • PDF