• Title/Summary/Keyword: Fire Resistance Steel

Search Result 275, Processing Time 0.022 seconds

Performance Based Fire Engineering in Japan

  • Kohno, Mamoru;Okazaki, Tomohito
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper explains the Japanese present situations relevant to the fire resistance performance. Performance-based fire provisions was introduced in 1998 for the first time when the Building Standard Law was amended. However, performance-based fire resistance design had been used since long before the official introduction of performance-based provisions. A Comprehensive Technology Development Project of Ministry of Construction from 1982 to 1986 established a technical basis for performance-based fire safety engineering in Japan. A system of calculation methods for fire resistance verification was prescribed in the Ministry Notification in 2000 utilizing the results of this project as a background. This method, referred to as the Fire Resistance Verification Method (FRVM), is the standard method to verify the fire resistance performance of principal building parts such as columns, beams, and walls of steel, concrete, or wood structured buildings. For tall buildings, however, more advanced method for performance verification is often necessary because new building materials or structural systems are often used for these buildings. An example project of tall building owned by a major newspaper company is presented in this paper. Advanced thermal deformation analysis is executed to secure the fire resistance of the building.

Advanced numerical model for the fire behaviour of composite columns with hollow steel section

  • Renaud, C.;Aribert, J.M.;Zhao, B.
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.75-95
    • /
    • 2003
  • A numerical model is presented to simulate the mechanical behaviour of composite steel and concrete columns taking into account the interaction between the hollow steel section and the concrete core. The model, based on displacement finite element methods with an Updated Lagrangian formulation, allows for geometrical and material non linearities combined with heating over all or a part of the section and column length. Comparisons of numerical calculations made using the model with 33 fire resistance tests show that the model is able to predict the fire resistance, expressed in minutes of fire exposure, of composite columns with a good accuracy.

Fire Resistance of Concrete Filled Double Skin Tubular Columns under Axial Load (일정 축력을 받는 Double CFT기둥의 내화성능 평가)

  • Chung, Sang-Keun;Kim, Sun-Hee;Lee, Seong-Hui;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Although an uncoated CFT column with a high axial-force ratio can be used to secure fire resistance for two hours or less in low-rise buildings, it does not satisfy the three-hour-long fire resistance required in high-rise buildings. Accordingly, so that the uncoated CFT column could be used for high-rise buildings, additional measures for the improvement of its fire resistance should be proposed. In this regard, the use of a Double CFT column as a measure for improving the fire resistance of the uncoated CFT column was proposed in this paper. A fire resistance test was conducted on an uncoated CFT column and a Double CFT column in real scale, under a load. Through such test, the effect of the Double CFT column on fire resistance was evaluated and then compared with that of a variant shape of the cross-section of a steel column.

Experimental Study on the Fire Resistance of SC Composite Coloumn (SC 합성기둥의 내화성능에 대한 실험연구)

  • Lee, Sueng Jea;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.425-434
    • /
    • 2007
  • The SC (steel-concrete) composite column was developed to take advantage of the relative economy of using concrete as opposed to steel in carrying large compressive forces. As the SC composite column is pre-fabricated, its use can minimize laborand can speed up the erection of a steel building. In this study, an experiment was conducted to analyze the influence of several parameters, such as the load ratio, the concrete ratio of an area, and its performance with or without fire protection, on the performance of the SC composite column. This paper proposes that the calculation of the strength reduction ratios of columns be done by increasing the temperature. Theoretical equations were used to evaluate the effectiveness of the fire resistance of the SC composite column, and the results of the test and analysis were compared. The fire resistance of the SC composite column was increased by decreasing its load ratio, but the concrete ratio of an area has minimal influence on the fire resistance of the SC composite column.

Experimental Study on the Fire Resistance of the iTECH Composite Beam (iTECH 합성보의 내화성능에 대한 실험연구)

  • Lee, Sueng Jae;Kang, Seong Deok;Choi, Seng Kwan;Kim, Myeong-Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.643-654
    • /
    • 2006
  • Thispaper presents the results of an experimental investigation into the fire performances ofsimply supported iTECH composite beams using an ISO834 standard fire. There are very few independent studies on the fire resistance of composite steel and concrete structures of various designs. The iTECH composite beam system has been used in construction, but nothing is known about its influence in a fire. To evaluate the fire resistance performanceof the iTECH beam, a test was conducted for 4.7m-span-length iTECH beams under given conditions in a laboratory. The fire resistance performance of unprotected coatings of the iTECH beam has been examined, and a longer period of fire resistance was achieved by increasing the beam coating's section size and decreasing its load ratio. Coatings for the fire protection of iTECH beams reduce the rate of temperature rise of the beam in case of fire, and the required thickness of spray-on fire protection coatings can be determined by means of tests.

An Experimental Study on the Fire Resistance Capacity of Asymmetric Slimflor Beam (비대칭 H형강 슬림플로어 보의 내화 성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Asymmetric Slimflor Beam had been unveiled with Thor beam (Hat beam) in Sweden since the late 1970s and had been developed by British Steen and SCI. In the major advanced countries in Europe after the early 1990s have interested in and developed this method, it has been concrened as the absence of hot-rolled section steel in the United Kingdom and welded of asymmetric section steel in Finland in the 2000s. It can be increase total floor area about 10%, save the interior and exterior materials, reduce the waste through reduction of the floor height. And it has more excellent fire resistance performance because less exposed than a regular composite steel beam in fire. This study is purpose that, a fire resistance performance of the Asymmetric Slimflor Beam in fire, it compared the temperature range with deflection of structure by fire behavior and load ratio of structure through change the shape of the steel cross-section in standard fire condition.

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns (철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안)

  • Kim, Sun-Hee;Ok, Chi Yeol;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M.;Muntasir Billah, A.H.M.;Quayyum, Shahriar;Ashraf, Mahmud;Rafi, A.N.M.;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.705-724
    • /
    • 2013
  • The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.