• Title/Summary/Keyword: Fire Load Test

Search Result 160, Processing Time 0.03 seconds

Experiment and Analysis of Real-Scale Fire Test for Establishment of Design Fire in Building Structures (건축구조물의 설계화재정립을 위한 실규모 화재실험 및 분석)

  • Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.119-120
    • /
    • 2014
  • In this study, we looked into the method to establish fire growth rate by buildings use for growing fire at the beginning of a fire considering the characteristics of the combustibles in a performance-based design. Actual conditions survey and literature review were carried out for the fire load and exposed surface area of combustibles to establish design fire by domestic building use. As a results, a simplified prediction equation of fire growth rate which depends on fire load and weight of combustibles could be derived by calculating the relation between the fire load and the fire growth rate of an initial fire through investigation of combustibles by domestic building use.Also, as a result of analyzing the placement of combustibles and location of the ignition source, it was found that the influence of the materials of the combustibles and the materials of the combustibles adjacent to the ignition source is big. Though 4 different experiments were carried out for the evaluation, the result of comparing the findings with those of FGR model showed that the fire growth rate was similarly derived.

  • PDF

A Study on the Fire Resistance Performance Concerning Types of Fire Protection Method and Load Ratio of High Strength Concrete Column Using The Wire Rope (와이어로프를 적용한 고강도 철근콘크리트 기둥의 내화공법 및 하중비에 따른 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.64-71
    • /
    • 2012
  • The fire resistance test has been conducted under the standard fire & loading conditions to evaluate fire resistance performance, according to applying to methods of the lateral confinement reinforcement by prestressed Wire Rope and fire resistance reinforcement by Fiber-Cocktail and load ratio for high strength concrete column. The test result, for 60 MPa high-strength concrete column, It was indicated that applying to the wire rope has improved axial ductility in the fire condition, and fire resistance performance has been enhanced by more than 23 %. In addition to this, in case of applying the wire rope to 60 MPa high-strength concrete column, load can be judged that about 70 % of designed load is appropriate. If the Wire Rope and Fiber-Cocktail is applied to 100 MPa high-strength concrete column, It was shown that the fire resistance performance was enhanced by 4 times as much as applying only hoops.

Study on Fire Resistance of H-Section Beams Filled with Concrete at Web (웨브 보강 형태에 따른 H형강 보부재의 내화성능에 관한 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.76-84
    • /
    • 2011
  • Steel beams are one of primary member and those carries the horizontal load and floor load to axial member. To avoid structural failure when the steel beams are exposed to fire, fire resistance performance requires. Till now, the evaluation for fire resistance of the beam was conducted using the maximum load and standard fire curve defined in the KS F 2257. But recently the constructional patterns are changing toward multi-function performance to get a better structural performance and fire resistance as well. In this paper to get the databases for fire resistance, limiting temperatures of the beam, load-bearing fire tests according to load ratios, two grades of compressive concrete strengths were applied.

STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

  • Chung, Chul-Hun;Im, Cho Rong;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.223-236
    • /
    • 2013
  • In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

A Study on Economic Evaluations of ESS Load Test Device for Field Load Test in Fire-fighting Emergency Generator Systems (소방용 비상발전기의 현장부하시험을 위한 ESS 부하시험장치의 경제성평가에 관한 연구)

  • Choi, Seung-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.380-386
    • /
    • 2020
  • The ESS load test device (ELTD) can store and exchange electrical energy during the load test of an emergency generator. On the other hand, it is difficult to commercialize ELTDs based on Li-ion batteries because of the high initial cost, which is higher than a load bank test. If the trade of electrical energy stored in ELTD during the test of an emergency generator is considered, it may be possible to commercialize the ELTD. Therefore, this paper proposes an economic model of ELTD composed of the costs and benefits by considering electrical energy trade to perform accurately economic evaluations of an ELTD. From the simulation results of the economic evaluations of an ELTD and the load bank method, it was found that the commercialization of ELTD is possible when the trade in electrical energy in ELTDs is considered.

The Study on Compartment Fire Experiment According to Fire Load (화재하중에 따른 구획화재 실험 연구)

  • Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.16-22
    • /
    • 2017
  • In Korea, performance-based fire safety designs are being discussed to deal with the various risks of fire in complex and diverse types of structure. However, performance-based fire safety designs are not actively employed because it is difficult to estimate the fire characteristics related to the various factors in buildings. In this study, real scale fire tests were conducted based on fire severity levels and fire loads provided in He New Zealand Building Code, in order to use the results as guidelines and fundamental data for performance-based designs. In the real scale fire tests conducted in a 10MW full-scale calorimeter, wood cribs were placed in a $2.4(L){\times}3.6(W){\times}2.4(H)m$ mock-up of a compartment which had one $0.8(L){\times}2.0(H)$ opening for different fire loads and heating was continued until all of the wood cribs were burned down. The heat release rate started to increase rapidly 90 seconds after the wood cribs caught fire. In the test with a fire load level 1, the maximum heat release rate of 4743.4 kW was reached at 244 second. In the test with fire load level 2, a maximum heat release rate of 5050.9 kW was reached at 497 second. In the test with fire load level 3, a maximum heat release rate of 4446.9 kW was reached at 677 second.

A Study on the Ventilation Improvement of Diesel Locomotive Engine Load Test Building using Computational Fluid Dynamics (전산유체역학을 이용한 디젤엔진 부하시험장의 환기 개선에 관한 연구)

  • Park Duckshin;Jeong Byungcheol;Cho Youngmin;Park Byunghyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2005
  • The aim of this study is to relieve the poor ventilation problem of the diesel locomotive engine load test building, located in an urban area. This paper evaluates the ventilation performances of the studied load test building based on the temperature measurement experiment and the computational fluid dynamics (CFD) during the engine load test. The temperature rise caused by the radiator blower of the building was turned out to be the main cause of disturbing the thermal conditions of the building. The indoor temperature distributions simulated by Fluent were validated with the temperature measurement results obtained from the studied building. The simulation results indicated that the comfort condition of this building was poor We suggested several remedial changes in the duct structure of this building for the improvement of the comfort conditions. In addition, a prototype drawing combining several improved design options was proposed. and then the simulation of the temperature distribution in the proposed prototype was performed. The result indicated that the indoor thermal condition of this proposed building was improved when compared with that of the current building.

Study on the cable fire test for Train (철도차량용 전선의 화재안전기준 조사)

  • Lee, Duck-Hee;Lee, Kwan-Sub;Jung, Woo-Sung;Lee, Cheul-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1119-1124
    • /
    • 2008
  • Defect of the Cable is one of the most frequent cause of fire accident for years. It also take a big part of the fire load for train. In this study, we reviewed the standard code of other countries for cable fire test. Oxygen index, flame propagation test, smoke test and toxicity test codes were investigated. We also suggest the our national code for train cables.

  • PDF

Evaluation on Fire Test for the Concrete Filled Steel Tube Column -Fire Damage Evaluation on Steel Tube and Concrete after a Fire Test- (콘크리트충전 강관기둥의 내화실험에 대한 고찰 -재하가열실험후의 강관 및 콘크리트 화재손상평가를 중심으로-)

  • Park, Ki-Chang;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.759-767
    • /
    • 2000
  • In this study, the time dependent internal stress changes of a Concrete Filled Steel Tube(CFT) column during a fire test were quantitatively analyzed. The strain ratio of a CFT column on the different loads was measured by tensile strength tests in terms of yield strength, tensile strength average extensibility and elasticity modulus. To understand the internal material properties change of concrete in CFT column damaged due to a fire, the compressive strength and elastic modulus tests were measured on a core sample from the center of the steel tube after the fire test. The elastic modulus test measured the strain from the stress. To determine the fire temperature of the test material, a differential thermal analysis was done. From the tested result, the gained data were conducted and an analysis method was suggested. The purpose of this work is to suggest a basic data for structure regulation enactments of the internal fire design of CFT.

  • PDF

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.