• Title/Summary/Keyword: Fire Dynamics Simulator

Search Result 160, Processing Time 0.025 seconds

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Fire Protection System for Ubiquitous Environment (유비쿼터스 환경을 위한 소방시스템)

  • Kang, Won-Chan;Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system. this is major factor that reduces damage of our wealth. therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

Simulation of Pool Fire with Two Rooms Using FDS Model (화재분석모델을 이용한 이중격실화재 검증분석)

  • Kim, Bong-Hyun;Bae, Yong-Bum;Ryu, Su-Hyun;Lee, Gong-Hee;Kim, Yun-Il;Moon, Chan-Ki;Park, Jong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1332-1337
    • /
    • 2008
  • Fire model shall be verified and validated to reliably predict the consequences of fires within its limitations. This study aims to predict pool fire with two rooms using FDS and to coompare FDS simulation results with PRISME experimental data which can be applicable to the fire of nuclear power plant facility. Four different sizes of grid (0.08m, 0.1m, 0.125m, 0.2m) are used in the simulation and the simulated results of specific quantities such as temperature, chemical composition, heat flux and heat release rate are compared to the experimental data. From this study, the FDS simulation results with the finer grid resolution show better similarity and trend with pool fire experimental data. The sensitivity analysis and the selection of the proper size grid are essential to predict the consequences of pool fire with two rooms reliably.

  • PDF

Fire Protection equipment for Ubiquitous System (유비쿼터스 시스템을 이용한 소방설비)

  • Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Hyung-Chul;Kang, Won-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.139-144
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system, this is major factor that reduces damage of our wealth, therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

  • PDF

A Experimental and Analytical Study on the Fire Plume Ejected from an Opening (개구분출열기류성상 예측을 위한 실험 및 해석적 연구)

  • Kim, Bong-Chan;Shin, Yi-Chul;Koo, In-Hyuk;Youn, Yoo-Hyuk;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.327-332
    • /
    • 2009
  • 2005년 발코니 확장이 합법화 된 이후로 공동주택인 아파트의 지속적인 증가와 재개발및 재건축이 이루어짐에 따라 상층부의 화재확대를 차단하는 발코니를 확장하는 세대가 증가하고 있으며, 기존의 아파트 또한 불법 발코니 확장을 하는 사례가 늘어나고 있다. 따라서 본 연구는 발코니의 화재 안전에 대한 역할의 중요성을 부각시키고자, 발코니유 무에 따른 상층부의 개구분출열기류확산실험을 모형실험을 통해서 실시 한 후 'NIST'에서 개발 된 FDS(Fire Dynamics Simulator)를 사용해 해석하였다. 실험과 FDS해석, 그리고 Trajectory를 비교하여, 종횡비에 따른 1:1인 창과 횡장창과 종장창에 대해 서로 다른 분출열기류를 보이는 것을 확인하였다.

  • PDF

Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening

  • Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.410-423
    • /
    • 2019
  • Fire suppression using a water mist nozzle directly above an n-Heptane pool in a fire compartment with a door opening was numerically investigated using the Fire Dynamics Simulator (FDS) for the purpose of application in nuclear power plants. Input parameters for the numerical simulation were determined by experimental measurements. Water mist was activated 10 s after the fire began. The sensitivity analysis was conducted for three input parameters: total number of cubic cells of 6032-2,926,400, droplets per second of 1000-500,000, and extinguishing coefficient of 0-100. In a new simple calibration method of this study, the extinguishing coefficient yielding the fire suppression time closest to that measured by experiments was found for use as the FDS simulation input value. When the water mist jet flow made contact with the developed fire, the heat release rate instantaneously increased, and then rapidly decreased. This phenomenon occurred with a displacement of the flame near the liquid fuel pool. Changing the configuration of the door opening with different aspect ratios and opening ratios had impact on the maximum value of the heat release rate due to the flame displacement.

Fire Simulation for Vent Flow and Temperature in Engine Room of Small Ship: Effects of Ceiling Duct Location and Side Vent Size (소형선박 기관실의 개구부 유동 및 온도에 대한 화재시뮬레이션: 천장 통풍통 위치 및 측면 개구부 크기 영향)

  • Jeong, Lee-Gyu;Lee, Chi Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.454-465
    • /
    • 2020
  • Fire simulations were performed using the Fire Dynamics Simulator (FDS) software to examine the vent flow and temperature in the engine room of a small ship. A diesel fire with a heat release rate of 10 kW was targeted, and the effects of the ceiling duct location, side vent existence and nonexistence, and side vent size were investigated. The existence or nonexistence of the side vent and its size considerably affected the smoke behavior, mass flow rate through the vent, and temperature. When the side vent was not installed or was small, the smoke layer reached the floor in the engine room. In addition, as the side vent size increased, the mass flow rate through the vent increased with decreasing temperature value. However, the effects of the ceiling duct location on the smoke behavior, mass flow rate through the vent, and temperature seemed to be relatively minor compared to those of the side vent size. Therefore, to improve the fire safety of the engine room in a small ship, the side vent size is considered to be a more important design factor than the ceiling duct location.

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation (환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션)

  • Yang, Sungl-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF