• Title/Summary/Keyword: Fire Duration Time

Search Result 42, Processing Time 0.027 seconds

Complexity of the Fire Sequencing Problem

  • Lee, Kyung-Sik;Kwon, O-Jeong;Park, Sung-Soo;Park, Kyung-Chul
    • Management Science and Financial Engineering
    • /
    • v.5 no.2
    • /
    • pp.55-59
    • /
    • 1999
  • In this note, we introduce the Fire Sequencing Problem, which arises in military operations. Given m weapons, n fixed targets nad required duration of firing of the weapons on the targets, we want to determine the start time of firing on each target so that makespan is miniized while satisfying various operational constraints. We show that the decision problem of the Fire Sequencing problem is strongly NP-complete and remains strongly NP-complete even if the number of weapons is two. We also briefly discuss the results with respect to the complexities of several well-known scheduling models.

  • PDF

Effects of the Geometry and Location of an Vertical Opening on the Fire Characteristics in the Under-Ventilated Compartment Fire (환기부족 구획화재에서 수직 개구부의 형상 및 위치가 화재특성에 미치는 영향)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.20-29
    • /
    • 2013
  • To investigate numerically the effects of geometry and location of vertical opening on the thermal and chemical fire characteristics in full-scale under-ventilated compartment fires, the ventilation factor ($A\sqrt{h}$) to estimate a theoretical maximum inflow of ambient air and the mass loss rate in a heptane pool fire were fixed for all cases. It was shown that variations in door geometry affected significantly the change in thermal and chemical characteristics inside the compartment. Variations in window location resulted in the complex change in additional fire characteristics including the fire duration time and recirculating flow structure. These results were analyzed in details by the multi-dimensional flow and fire characteristics including the vent flow and fuel/air mixing phenomena.

A Combustion Analysis of Surface Fuel Burning Experiment According to Density Variation (밀도에 따른 지표 연료의 연소실험 분석)

  • Kim, Eung-Sik;Kim, Jang-Hwan;Kim, Dong-Hyun;Park, Hyung-Ju;Kim, Jeong-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper shows combustion characteristics of fallen leaves of Quercus variabilis and Pinus densiflora according to variation of mass densities. Combustion temperature, mass loss rate, flame height, duration of combustion and velocity of hot gas are measured and analyzed. For the experiment 10cm heighted baskets with varying diameters of 20, 30, 40 and 50cm are used for the combustion and the pilot ignition is carried on the top of the fuel. In case of Pinus densiflora mass loss rate, duration of flame, flame height and combustion time become larger as the mass density and diameter of basket increase, on the other hand Quercus variabilis shows saturation characteristics in mass loss rate and flame height. Velocity of hot gas is proportional to flame height.

An Experimental Study on Development of a Window Sprinkler for Fire Spread Prevention along Building External Walls (건물 외벽 화재확산 방지용 윈도우 헤드의 개발을 위한 실험적 연구)

  • Kwark, Jihyun;Kim, Dong-Jun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • In case of fire in a high-rise building fire can be easily spread along the building external walls dramatically if the flame comes out through broken windows. There are a few effective methods to prevent the fire spread at the moment. One is using a fire resistance window, and the other is using a window sprinkler that discharges water to resist flame in case of fire. In this study a window sprinkler which is installed on top of windows and prevents fire by discharging water when its heat-responsive element opens was tested using a large scale furnace in accordance with the standard temperature-time graph. Test result showed that one window sprinkler was able to protect a 2,400 mm wide window from fire for 2 hours and the window backside's temperature locally increased up to $126^{\circ}C$ but kept stable around $100^{\circ}C$ for the test duration.

A Study on the Determination of Required Fire Protection Thickness Considering Steel Section Shape (강재단면형상을 고려한 소요 내화피복 두께 산정에 관한 연구)

  • Kim, Hae-Soo;Kang, Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5910-5916
    • /
    • 2011
  • Surface area of the steel member exposed to fire differs according to type and size of the section and the kind of the member, which shows a big difference in the temperature rise of the steel by fire. The section factor ($H_p$/A) is determined by factors such as type, size, and member of the steel and type of the fire protection material, and it is the criteria in determining thickness of the fire protection material. This study showed that the size of the steel increase regardless of the steel type, the section factor decrease. In the results on fire protection thickness of the steel according to the section factor, the efficiency of 1 hour fire protection was lower from 30 to 50% than the criteria. And there is the member, which have the thickness lower the minimum 27% in 2 hour fire protection, but it generally approached in the criteria. In case of H-shape steel, the efficiency of 3 hour fire protection was suitable for the criteria, but rectangular hollow steel section and circular hollow steel section were higher (5.0-17.5%) than the criteria.

Effects of evacuation delay time and fire growth curve on quantitative risk for railway tunnel fire (철도터널 화재 시 피난개시시간지연 및 화재성장곡선이 정량적 위험도에 미치는 영향)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu;Lee, Hoo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.809-822
    • /
    • 2018
  • A quantitative risk assessment has been introduced to quantitatively evaluate fire risk as a means of performance based fire protection design in the design of railway tunnel disaster prevention facilities. However, there are insufficient studies to examine the effect of various risk factors on the risk. Therefore, in this study, the risk assessment was conducted on the model tunnel in order to examine the effects of the evacuation start time delay and the fire growth curve on the quantitative risk assessment. As a result of the analysis of the scenario, the fatalities occurred mainly when escapes in the same direction as the direction of the fire smoke movement. In addition, after the FED exceeded 0.3, the maximum fatalities occurred within 10 minutes. In the range of relatively low risk, distance between cross passages, evacuation delay time and fire growth curve were found to affect the risk, but they were found to have little effect on the condition that the risk reached the limit. Especially, in this study, it was evaluated that the evacuation delay time reduction, fire intensity and duration reduction effect were not observed when the distance between cross passages was more than 1500 m.

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges (FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안)

  • Ann, Ho June;Park, Cheol Woo;Kim, Yong Jae;Jang, Young Ik;Kong, Jung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.185-195
    • /
    • 2017
  • In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

Thermal Impact Characteristics by Forest Fire on Porcelain Insulators for Transmission Lines

  • Lee, Won-Kyo;Choi, In-Hyuk;Choi, Jong-Kee;Hwang, Kab-Cheol;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2008
  • In this study the thermal impact characteristics by forest fire are extensively investigated using temperature controlled ovens. The test conditions for thermal impact damage are simulated according to the characteristics of natural forest fire. The test pieces are suspension porcelain insulators made by KRI in 2005 for transmission lines. In the thermal impact cycle tests with $300\;^{\circ}C$ thermal impact gradient (-70 to $230\;^{\circ}C$), cycling in 10 minute periods, no critical failures occurred in the test samples even with long cycle times. But in tests with thermal impact gradient from room temperature to $200-600\;^{\circ}C$, cycling in 10 to 30 minute periods, there were critical failures of the porcelain insulators according to the thermal impact gradient and quenching method. In the case of thermal impact by forest fire, it was found of that duration time is more important than the cycling time, and the initiation temperature of porcelain insulator failures is about $300\;^{\circ}C$, in the case of water quenching, many cracks and fracture of the porcelain occurred. It was found that the thermal impact failure is closely related to the displacement in the cement by thermal stress as confirmed by simulation. It was estimated that the initiation displacement by the thermal impact of $300\;^{\circ}C$ is about 0.1 %. Above 1% displacement, it is expected that the most porcelain insulators would fail.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Developing Forest Fire Occurrence Probability Model Using Meteorological Characteristics (기상자료(氣象資料)를 이용(利用)한 산불발생확률모형(發生確率模型)의 개발(開發))

  • Choi, Kwan;Han, Sang Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • Preparing the era of forest resources management requires studies on forest fire. This study attempted to develop forest fire occurrence model using meteorological characteristics for the practical purposes of forecasting forest fire danger rate. To accomplish this goal, the relationships between forest fire occurrence and meteorological characteristics are estimated. In the process, the forest fire occurrence pattern of the study region(Taegu-Kyungpook) is categorized by employing qualification IV method. The study region was divided into three areas such as, Taegu, Andong and Pohang area. The meteorological variables emerged as affective to forest fire occurrence are relative humidity, longitude of sunshine, and duration of precipitation. To estimate the probability of forest fire danger, forest fire occurrence of three areas are regressed on the time series data of affective meteorological variables using logistic and probit model. The effectiveness of the models estimated are tested and showed acceptable degree of goodness. Those models developed would be helpful to increase the efficiency of forest fire management such as detection of forest fire occurrence and effective disposition of forest fire fight equipments.

  • PDF