• Title/Summary/Keyword: Finned Tube

Search Result 159, Processing Time 0.021 seconds

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery (저온 폐열 회수용 진동형 히트 파이프 열교환기의 성능 평가에 관한 연구)

  • 안영태;이욱현;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.368-376
    • /
    • 2001
  • Performance of heat exchanger was evaluated to heat exchanger using oscillating heat pipe for waste heat recovery of low temperature. Oscillating heat pipe used in this study was formed to the closed loop of serpentine shapes using copper tubes. Heat exchanger was formed to shell and tube type and composed of low finned tube. R-22 and R-141b were used to the working fluids of tube side and their charging ratio was 40%. And, water was used to the working fluid of shell side. As the experimental parameters, the inlet temperature difference of heating and cooling part of secondary fluid and the mass velocity of secondary fluid were used. The mass velocity of secondary fluid was changed from 90 kg/$m^2s\; to\;190 kg/m^2$s from the experimental results, heat recovery rate was linearly increased to the increment of the mass velocity of secondary fluid and the inlet temperature difference of secondary fluid. Finally, the performance of heat exchanger was evaluated by using $\varepsilon$-NTU method. It was found that NTU was about 1.5 when effectiveness was decided to 80%.

  • PDF

An Experimental Study on the Effect of the Air Temperature on the Air-Side Heat-Transfer Coefficient and the Friction Factor of a Fin-and-Tube Heat Exchanger (외기 온도 변화가 핀-관 열교환기의 공기측 열전달계수와 마찰계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2017
  • In general, the air-side j and f factors of evaporators or condensers are obtained through single-design tests performed under air-dry and wet-bulb temperatures. Considering that the indoor or outdoor air temperatures vary significantly during the operation of an air conditioner, it is necessary to confirm that the experimentally-obtained j and f factors are widely applicable under variable air conditions. In this study, a series of tests were conducted on a two-row slit-finned heat exchanger to confirm the applicability. The results showed that, for the dry-surface condition, the changes of the tube-side water temperature, water-flow rate, and air temperature had virtually no effect on the air-side j and f factors. For the wet condition, however, the f factor was significantly affected by these changes; contrarily, the j factor is relatively independent regarding this change. The formulation of the possible reasoning is in consideration of the condensation behavior underneath the tube. The wet-surface j and f factors are larger than those of the dry surface, with a larger amount for the f factor.

Performance and Heat transfer Characteristics of Louver Fin-tube Heat Exchanger for Simultaneous Cooling/Heating Heat Pump (동시 냉난방 히트펌프용 루버핀-관 열교환기 성능 및 전열특성 실험연구)

  • Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1337-1342
    • /
    • 2007
  • An experimental study has been performed to investigate the performance and heat transfer characteristics of the heat exchanger for simultaneous cooling/heating heat pump. The heat transfer performance was measured using an air-enthalpy calorimeter and a constant temperature water bath, to obtain the performance evaluation and analysis of a fined tube heat exchanger. Six finned tube heat exchangers with louver fin were tested under a heating condition. Air-side heat transfer and friction were presented in terms of j-factor and f-factor. The heat transfer coefficient increased with decreasing the fin pitch, j-factor and f-factor on the fin pitch and the number of tube rows decreased with increasing Reair.

  • PDF

Evaluation of Creep-Fatigue Integrity for High Temperature Pressure Vessel in a Sodium Test Loop (소듐 시험루프 내 고온 압력용기의 크리프-피로 건전성 평가)

  • Lee, Hyeong-Yeon;Lee, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.831-836
    • /
    • 2014
  • In this study, high temperature integrity evaluation on a pressure vessel of the expansion tank operating at elevated temperature of $510^{\circ}C$ in the sodium test facility of the SEFLA(Sodium Thermal-hydraulic Experiment Loop for Finned-tube Sodium-to-Air heat exchanger) to be constructed at KAERI has been performed. Evaluations of creep-fatigue damage based on a full 3D finite element analyses were conducted for the expansion tank according to the recent elevated temperature design codes of ASME Section III Subsection NH and French RCC-MRx. It was shown that the expansion tank maintains its integrity under the intended creep-fatigue loads. Quantitative code comparisons were conducted for the pressure vessel of austenitic stainless steel 316L.

Air-Side Performance of Fin-and-Tube Heat Exchangers Having Non-Symmetric Slit Fins Under Wet Condition (비대칭형 슬릿 핀이 적용된 핀-관 열교환기의 습표면 성능)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3698-3707
    • /
    • 2015
  • In this study, wet surface heat transfer and friction characteristics of non-symmetric slit-finned heat exchangers are experimentally investigated. Louver-finned heat exchangers are also tested for comparison purpose. The effect of fin pitch on j and f factor is negligible. Louver fin samples yield higher j and f factors than slit fin samples. For one row, j and f factors of louver fin are 27% and 31% higher than those of slit fin. For two row, j and f factors of louver fin are 15% and 30% higher. Both j and f factor decrease as the number of tube row increases. For one row, average j/f ratios of slit fin samples are 3.4% larger than those of louver fin samples. For two row, average j/f ratios of slit fin samples are 11.5% larger. A new correlation was developed using the present data.

Heat Transfer Study to Replace a Tube Bundle of Moisture Separator Reheater at Nuclear Power Plant (원전 습분분리재열기 튜브 번들 교체를 위한 열전달 고찰)

  • Choi, You-Sung;Choi, Kwang-Hee;Lee, Sang-Guk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • The plugging rate of reheater tubes of Wolsung unit 1 nuclear power plant has been increased by corrosion and erosion since 1990. As the dimensions of the new first stage reheater bundle tubes which were supplied by Hanjung company to replace were different from old one, numerical calculations are carried out for flow and heat transfer in the reheater bundle tubes of the N.P.P. Numerical calculations consists of thermal performance, drain line pressure drop, flow change by pressure drop of line, stress analysis of finned tubes and analysis of flow induced vibration. Computational analysis using heat transfer research institute program is adopted to verify the results of the numerical calculations. It contains the evalution of performance in the system with view to location of the new reheater bundle and it shows the differences between the numerical calculation results and heat transfer research institute program output.

  • PDF

The Heat Transfer Performance with Pumping Power for a Particle Bed Heat Exchanger (입자층(粒子層)을 이용한 열교환기(熱交換器)에서 소요동력(所要動力)에 따른 전열특성(傳熱特性)에 관(關)한 연구(硏究))

  • Yoo, J.O.;Yang, H.J.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.351-359
    • /
    • 1992
  • In order to improve the performance of heat exchanger, fluidized bed is often employed. The experiments are carried out in fluidized double pipe parallel flow heat exchanger in which finned tube is vertically immersed. And the heat transfer coefficients between the heated tube and fluidized bed of alumina beads(dp=0.41, 0.54, 0.65, 0.77mm) are calculated as a function of air fluidized velocity and pumping power. The effects of particle size, static bed height and pumping power on the heat transfer coefficients are investigated. And the heat transfer coefficients are compared with that of single phase forced convection heat exchanger. In particular, the heat transfer performance of each type heat exchanger is evaluated in relation to the pumping power.

  • PDF

Forced Convection Characteristics of V type Circular-finned Tube Heat Exchanger (V형 원형휜-원형관의 강제대류 열유동 특성)

  • Lee, Jong-Hwi;Lim, Mu-Gi;Kang, Hie-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1348-1354
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of V type circular fin-tube heat exchanger. Four kinds of V type fin having the same fin area and the different span wise angle tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for decreasing the span wise angle up to 58% and 25% respectively.

  • PDF

Structural Analysis of Boiler Module for Sea-Transportation (해상 운송을 위한 보일러 모듈의 구조 해석)

  • Jeon, Y.C.;Kim, T.W.;Jeong, D.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.788-793
    • /
    • 2001
  • Finite element analysis was carried out to investigate the integrity and reliability of boiler module during sea transportation. The boiler module was supported by steel structure to relieve the instantaneous shock from oceanic wave and its primary parts were strengthened with several reinforcements. Finned tube walls which were used in the furnace wall were assumed as orthotropic plates having equivalent material properties. The bank tubes were also equivalently modeled in accordance with ASME B31.1 for the convenience of finite element modeling. The calculation results were compared with the yield stress of the material. In particular, the bank tube stress, which was evaluated by converting the calculated stresses in equivalent tubes into those in original tubes by using the ratio of diameter, was also examined with yield stress.

  • PDF