• Title/Summary/Keyword: Finite-volume

Search Result 1,934, Processing Time 0.03 seconds

Construction of Open-source Program Platform for Efficient Numerical Analysis and Its Case Study (효율적 수치해석을 위한 오픈소스 프로그램 기반 해석 플랫폼 구축 및 사례 연구)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.509-518
    • /
    • 2020
  • This study constructed a new simulation platform, including mesh generation process, numerical simulation, and post-processing for results analysis based on exploration data to perform real-scale numerical analysis considering the actual geological structure efficiently. To build the simulation platform, we applied for open-source programs. The source code is open to be available for code modification according to the researcher's needs and compatibility with various numerical simulation programs. First, a three-dimensional model(3D) is acquired based on the exploration data obtained using a drone. Then, the domain's mesh density was adjusted to an interpretable level using Blender, the free and open-source 3D creation suite. The next step is to create a 3D numerical model by creating a tetrahedral volume mesh inside the domain using Gmsh, a finite element mesh generation program. To use the mesh information obtained through Gmsh in a numerical simulation program, a converting process to conform to the program's mesh creation protocol is required. We applied a Python code for the procedure. After we completed the stability analysis, we have created various visualization of the study using ParaView, another open-source visualization and data analysis program. We successfully performed a preliminary stability analysis on the full-scale Dokdo model based on drone-acquired data to confirm the usefulness of the proposed platform. The proposed simulation platform in this study can be of various analysis processes in future research.

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.

Dome Shape Design and Performance Evaluation of Composite Pressure Vessel (복합재 압력용기의 돔 형상 설계 및 성능 평가)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun;Doh, Young-Dae;Moon, Soon-Il
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • Dome shape design methods of Filament Winding (FW) composite pressure vessel, which can suggest various dome contour according to the external loading conditions, were investigated analytically and numerically. The performance indices(PV/W) of the pressure vessels with same cylinder radius and boss opening but different dome shape were evaluated by finite element analysis under the internal pressure loading condition. The analysis results showed that as the dome shape becomes flat, the performance index decreases significantly due to the reduced burst pressure. Especially, for the case of the high value of the parameter ro, the ratio between the radii of the cylinder part and the boss opening, the flat dome is disadvantageous in the aspect of the weight reduction, and additional reinforcing dome design technique should be required to increase the burst pressure. For example, above ro=0.54 condition, the dome shape change according to the loading condition could cause the low burst pressure and increase of composite weight in dome region and is not recommendable except for the special case that maximum inner volume or sufficient space between skirt and dome is the primary design objective. However, at ro=0.35, the dome shape change brings not so significant differences in the performance of FW vessel.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems (생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구)

  • 김윤기;고재균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Structural Behavior of Slab in the Partial Demolition for the Apartment Remodeling (아파트 리모델링을 위한 부분해체에서 슬래브의 구조적 거동)

  • Choi, Hoon;Joo, Hyung Joong;Kim, Hyo Jin;Yoon, Soon Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.19-30
    • /
    • 2012
  • Due to the fact that the social environment is improved and the urban development is stabilized, the demand of new construction of apartment becomes slowdown. Accordingly, there are many researches to lengthen the service life of the existing apartment through the remodeling and its importance is continuously rising. However, reliable design specifications and guidelines for the design of remodeling with partial demolition are not provided yet in Korea. Specially, in the apartment remodeling, slab collapse accidents take major portion in all accidents that reported by Korean Government. It is very important to prevent intial crack of slab because intial crack could cause severe accident like collapse of all structure in a short period of time. The purpose of this study is to develop structural guidelines that could guarantee the structural safety and serviceability of slab structure and could be adopted in Korean remodeling with partial demolition. There are mainly two components to determine structural behavior of slab structure. One is the shape of slab structure and the other is load which is resisted by the slab structure. In this study, the weight per unit volume of concrete debris and concrete strength are estimated through the analysis of previous researches to recognize the relationship between the shape of slab and load that loaded on the slab. Accordingly, approximately 300 pieces of floor plan are collected and analyzed. The finite element analysis is conducted using these analyzed and estimated results. From the finite element analysis results, the limited stacking height of debris is suggested and the stacking method is also discussed. In addition, to find the relationship between movement of demolition equipment and structural behavior of slab, the static and dynamic loading tests are conducted. From the results of loading tests, the impact factor which will be considered in the remodeling design could be estimated.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.