• Title/Summary/Keyword: Finite-elements analysis

Search Result 1,889, Processing Time 0.029 seconds

An edge-based smoothed finite element method for adaptive analysis

  • Chen, L.;Zhang, J.;Zeng, K.Y.;Jiao, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.767-793
    • /
    • 2011
  • An efficient edge-based smoothed finite element method (ES-FEM) has been recently developed for solving solid mechanics problems. The ES-FEM uses triangular elements that can be generated easily for complicated domains. In this paper, the complexity study of the ES-FEM based on triangular elements is conducted in detail, which confirms the ES-FEM produces higher computational efficiency compared to the FEM. Therefore, the ES-FEM offers an excellent platform for adaptive analysis, and this paper presents an efficient adaptive procedure based on the ES-FEM. A smoothing domain based energy (SDE) error estimate is first devised making use of the features of the ES-FEM. The present error estimate differs from the conventional approaches and evaluates error based on smoothing domains used in the ES-FEM. A local refinement technique based on the Delaunay algorithm is then implemented to achieve high efficiency in the mesh refinement. In this refinement technique, each node is assigned a scaling factor to control the local nodal density, and refinement of the neighborhood of a node is accomplished simply by adjusting its scaling factor. Intensive numerical studies, including an actual engineering problem of an automobile part, show that the proposed adaptive procedure is effective and efficient in producing solutions of desired accuracy.

Finite element modeling of bond-slip performance of section steel reinforced concrete

  • Liu, Biao;Bai, Guo-Liang
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.237-247
    • /
    • 2019
  • The key issue for the finite element analysis (FEA) of section steel reinforced concrete (SRC) structure is how to consider the bond-slip performance. However, the bond-slip performance is hardly considered in the FEA of SRC structures because it is difficult to achieve in the finite element (FE) model. To this end, the software developed by Python can automatically add spring elements for the FE model in ABAQUS to considering bond-slip performance. The FE models of the push-out test were conducted by the software and calculated by ABAQUS. Comparing the calculated results with the experimental ones showed that: (1) the FE model of SRC structure with the bond-slip performance can be efficiently and accurately conducted by the software. For the specimen with a length of 1140 mm, 3565 spring elements were added to the FE model in just 6.46s. In addition, different bond-slip performance can also be set on the outer side, the inner side of the flange and the web. (2) The results of the FE analysis were verified against the corresponding experimental results in terms of the law of the occurrence and development of concrete cracks, the stress distribution on steel, concrete and steel bar, and the P-S curve of the loading and free end.

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

Sectional Analysis of Sheet Metal Stamping Processes Using Bending Energy Augmented Membrane Element and Continuous Contact Treatment (굽힘 에너지가 보강된 박막 요소와 연속 접촉 처리를 이용한 스탬핑 공정의 단면 해석)

  • 윤정환;김종봉;양동열;유동진;한수식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.58-67
    • /
    • 1998
  • A sectional analysis of sheet metal forming process with an arbitrary tool shape is proposed in the present work. To improve the numerical convergence in the conventional membrane sectional analysis, the Bending Energy Augmented Membrane (BEAM) elements had been developed. The BEAM elements particularly improve the stability and convergence of the finite element method for the case of deep drawing. In this work, the FERGUBON spline (C$^2$-continuous) was used to fit the deformed mesh to smooth the given curves and calculate the local curvature of the deformed sheet. The fittings of the deformed sheet and tool surface profile ensure the stability and the convergence of the finite element analysis of highly nonlinear stamping processes. A center floor section and front fender section are analyzed to show the accuracy and robustness of the approach. The results obtained by the proposed approach are compared with the available experimental data.

  • PDF

High Deformable Concrete (HDC) element: An experimental and numerical study

  • Kesejini, Yasser Alilou;Bahramifar, Amir;Afshin, Hassan;Tabrizi, Mehrdad Emami
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.357-365
    • /
    • 2021
  • High deformable concrete (HDC) elements have compressive strength rates equal to conventional concrete and have got a high compressive strain at about 20% to 50%. These types of concrete elements as prefabricated parts have an abundance of applications in the construction industry which is the most used in the construction of tunnels in squeezing grounds, tunnel passwords from fault zones or swelling soils as soft supports. HDC elements after reaching to compressive yield stress, in nonlinear behavior have hardening combined with increasing strain and compressive strength. The main aim of this laboratory and numerical research is to construct concrete elements with the above properties so the compressive stress-strain behavior of different concrete elements with four categories of mix designs have been discussed and finally one of them has been defined as HDC element mix design. Furthermore, two columns with and without implementing of HDC elements have been made and stress-strain curves of them have been investigated experimentally. An analysis model is presented for columns using finite element method adopted by ABAQUS. The results obtained from the ABAQUS finite element method are compared with experimental data. The main comparison is made for stress-strain curve. The stress-strain curves from the finite element method agree well with experimental results. The results show that the dimension of the HDC samples is significant in the stress-strain behavior. The use of the element greatly increases energy absorption and ductility.

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

  • Palani, G.S.;Dattaguru, B.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.731-744
    • /
    • 2004
  • Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

Development of a Finite Element Human Neck Model for Neck Injury Analysis - Application to Low Speed Rear-End Offset Impacts - (목상해 분석을 위한 상세 유한요소 목모델 개발 - 저속후방 오프셋 충돌에 따른 분석 -)

  • Kim Young Eun;Jo Hui Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.913-920
    • /
    • 2005
  • Compared to previous in-vitro test, FE model showed reliable motion patterns. A finite element model of a 50th percentile male neck was developed to study the mechanics of whiplash injury while the rear impacts. The model was consisted of the whole cervical vertebrae including part of occipital, intervertebral discs. which were modeled using linear viscoelastic materials and posterior elements. The sliding interfaces were defined to simulate contact phenomena in facet joints and in odontoid process. All ligaments and atlanto-occipital membrane were modeled as nonlinear bar elements. Only muscle elements were not considered. Motion of each cervical vertebra was obtained from the dynamic simulation with a MADYMO model for 15 km/h $40\%$ rear end offset impacts. Soft tissue neck injury(STNI) was investigated with a developed FE model. In FE model analysis, the high stress was appeared at C3/C4 disc in offset impact. Further research is still needed in order to improve the developed neck FE model for many different crash patterns.

Automatic Generation of Quadrilateral Shell Elements on Sculptured Surfaces (자유곡면에서 사각형 쉘요소의 자동생성)

  • Park, S.J.;Chae, S.W.;Koh, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.145-153
    • /
    • 1995
  • An algorithm for the automatic generation of quadrilateral shell elements on three-dimensional sculptured surfaces has been developed, which is one of the key issues in the finite element analysis of structures with complex shapes such as automobile structures. Mesh generation on sculptured surfaces is performed in three steps. First a sculptured surface is transformed to a projection plane, on which the loops are subdivided into subloops by using the best split lines, and with the use of 6-node/8-node loop operators and a layer operator, quadrilateral finite elements are constructed on this plane. Finally, the constructed mesh is transformed back to the original sculptured surfaces. The proposed mesh generation scheme is suited for the generation of non-uniform meshes so that it can be effectively used when the desired mesh density is available. Sample meshes are presented to demonstrate the versatility of the algorithm.

  • PDF

A Hydroelastic Response Analysis of Ships with Forward Speed in Regular Waves (규칙파중을 항행하는 선박의 유탄성응답해석)

  • Lee, S.C.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.48-55
    • /
    • 2010
  • When a large ship is advancing in waves, ship undergoes the hydroelastic response, which has influences on structural stability and the fatigue destruction etc. of the ship. Therefore, to predict accurate hydroelastic response, it is necessary to analyze hydroelastic response including fluid-structure interaction. In this research, a ship is divided into many hull elements to calculate the fluid forces and wave exciting forces on each elements using three-dimensional source distribution method. The calculated fluid forces and wave exciting forces are assigned to nodes of hull elements. The neighbor nodes are connected with elastic beam elements. We analyzed hydroelastic responses, and those are formulated by using finite element method. Particularly, to estimate the influence of forward speed on the hydroelastic responses, we use two different methods : Full Hull Rotation Method(FHRM) and Sectional Hull Rotation Method(SHRM).

A General Description of Tool Surface Based on Finite Element Mesh and Its Application to 3-D Sheet Forming Processes (유한요소격자에 기초한 일반적인 금형면 묘사와 3차원 박판성형공정에의 응용)

  • Yun, Jeong-Hwan;Kim, Jong-Bong;Yang, Dong-Yeol;Kim, Seok-Gwan;Yu, Dong-Jin;Lee, Jae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.550-559
    • /
    • 2000
  • One of the most important factor to be considered for the analysis of sheet metal forming processes is the tool surface description for arbitrarily- shaped sheet metal parts. In the present study , finite element approach is used to describe the arbitrarily shaped tool surface. In finite element mesh approach, tool surfaces ar, described by finite elements. The finite elements mesh description of the tool surface, which is originally described by CAD data, needs much time and time-consuming graphic operation. The method, however, has been widely used to describe a complex tool surface. In the present study, the contact searching algorithm for the finite element mesh approach is developed based on cell strategy method and sheet surface normal scheme. For the verification purpose, a clover cup drawing, Baden-Baden oilpan problem and a trunk floor drawing were investigated. The computational results based on the finite element approach were compared with the results of available parametric patch approach and experiments.