• Title/Summary/Keyword: Finite-element

Search Result 22,323, Processing Time 0.036 seconds

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Modified finite element-transfer matrix method for the static analysis of structures

  • Ozturk, D.;Bozdogan, K.;Nuhoglu, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper the Modified Finite Element-Transfer Matrix Method, which is the combination of Transfer Matrix Method and Finite Element Method, is applied to the static analysis of the structures. In the method, the structure is divided into substructures thus the number of unknowns that need to be worked out is reduced due to the transformation process. The static analysis of the structures can be performed easily and speedily by the proposed method. At the end of the study examples are presented for ensuring the agreement between the proposed method and classic Finite Element Method.

Using multiple point constraints in finite element analysis of two dimensional contact problems

  • Liu, C.H.;Cheng, I.;Tsai, An-Chi;Wang, Lo-Jung;Hsu, J.Y.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • Two-dimensional elastic contact problems, including normal, tangential, and rolling contacts, are treated with the finite element method in this study. Stress boundary conditions and kinematic conditions are transformed into multiple point constraints for nodal displacements in the finite element method. Upon imposing these constraints into the finite element system equations, the calculated nodal stresses and nodal displacements satisfy stress and displacement contact conditions exactly. Frictional and frictionless contacts between elastically identical as well as elastically dissimilar materials are treated in this study. The contact lengths, sizes of slip and stick regions, the normal and the shear stresses can be found.

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Development of an Object-Oriented Finite Element Analysis Program Using J$Java^TM$ ($Java^TM$ 언어를 이용한 객체 지향 유한 요소 해석 프로그램의 개발)

  • 이정재;이호재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.130-139
    • /
    • 1998
  • The finite element analysis program should be prepared to deal with many of newly arising engineering problems. The sequential structured programming technique does not make a finite element method so flexible. So far, the object oriented programming technique was studied as an alternative programming paradigm. However, most of the research were in the state of the evaluation of the possibility and the applicability of the object oriented method for a finite element program. In this study, a practical object oriented finite element analysis program, OOFE_ JAVA was developed and the result of the analysis on a rectangular clamped plate was shown. The objects which compose the OOFE_JAVA were applied to several engineering problem without any modification and it was concluded that the object oriented technique was appropriate for the development of a complex and large engineering system. And a virtual machine which Java language is using can be loaded on any kinds of computer which has java interpreter regardless of the platform on which the OOFE_JAVA was developed.

  • PDF

ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1127-1144
    • /
    • 2013
  • In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order $k$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order $k(k{\geq}1)$. $L^2$ and $L^{\infty}$-error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for fourth order elliptic control problems.

A Composite Method of Finite Element and of Boundary Integral Methods for the Magnetic Field Problems with Open Boundary (유한요소법 및 경계적분법의 혼합법에 의한 개 영역 자장문제 해석)

  • 정현교;함송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.396-402
    • /
    • 1987
  • A Composite method of finite element and boundary integral methods is introduced to solve the magnetostatic field problems with open boundary. Only the region of prime interest is taken as the compution region where the finite element method is applied. The boundary conditions of the region are dealt with using boundary integral method. The boundary integration in the boundary integral method is done by numerical and analytical techniques repectively. The proposed method is applied to a simple linear problem, and the results are compared with those of the finite element method and the analytic solutions. It is concluded that the proposed method gives more accurate results than the finite element method under the same computing efforts.

  • PDF

Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes (임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Analytical Model Improvement of Automotive Muffler using the Experimental Results of Transmission Loss (투과손실 실험결과를 이용한 자동차용 소음기의 해석모델 개선)

  • Jung, Jin-Nyon;Kim, Won-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.204-209
    • /
    • 2001
  • The finite element model for automotive muffler analysis is improved by modifying the boundary condition of outlet and the mesh of finite element model. The model minimizes the difference between transmission loss from analysis and that from experiment. Four different boundary conditions and the four types of finite element model are tested to find out the best one of those. From the case study it is verified that the bevel of transmission loss can be changed by the variation of radiation impedance value. Also the resonance or anti-resonance frequencies of transmission loss can be shifted by the variation of finite element mesh. An improved finite element model of muffler is proposed in consideration with the accuracy and the computing time of analysis.

  • PDF

Finite Element Analysis of Soil-Reinforced Segmental Retaining Walls Subjected to Earthquake Loading (보강토 옹벽의 지진시 거동에 관한 유한요소해석)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.101-108
    • /
    • 2000
  • This paper presents the results of finite element analysis on the seismic response of a soil-reinforced segmental retaining wall subjected to a prescribed earthquake record. The results of finite element analysis indicate that the maximum wall displacement occurs at the top, exhibiting a cantilever type of wall movement. Also revealed is that the increase in reinforcement force is more pronounced in the upper part of the reinforced zone, resulting in a more or less uniform distribution. None of the design guidelines appears to be able to correctly predict the dynamic force increase when compared with the results of finite element analysis. The results demonstrated that there exist critical stiffness and length of reinforcement beyond which further increase would not contribute to additional reinforcing effect. Based on the findings from this study, a number of implications to the current design methods are discussed.

  • PDF