• Title/Summary/Keyword: Finite-difference time-domain(FDTD) method

Search Result 247, Processing Time 0.029 seconds

The characteristics and optimization of submicron optical mask using electromagnetic scattering effect (전자기파 산란을 이용한 Submicron 광학 MASK의 특성 및 최적화)

  • 최준규;박정보;김유석;이성묵
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.345-352
    • /
    • 1997
  • Recently, in designing optical mask such as 4GDRAM, the scattering effect of electromagnetic wave must be considered. For this reason we claculated directly the mask function using the finite difference time domain(FDTD) method. The modification of image theory with this new mask function could explain clearly the scattering effect at the etched side wall of the submicron optical mask. The characteristics of the various type of alternating PSM were investigated. According to the simulation, the dual wet etch process was the most useful fabrication technique to overcoe the light scattering off at the shifted opening.

  • PDF

Analysis of SAR for body-mounted mobile phones (인체 착용형 무선 단말기에 대한 노출량 해석)

  • Park, Min-Young;Ko, Chea-Ok;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.425-428
    • /
    • 2005
  • A variety of wireless devices are commercially available now. Most of studies, however, have been directed to the biological effects of mobile-phone EMF. In this study, dosimetric analysis for wireless devices of head-mounted display type and a wristwatch type were made to investigate possible biological effects of these devices. SAR (Specific Absorption Rate) distributions were calculated using FDTD (Finite Difference Time Domain) method, for adult human models such as standard Korean human model and VHP(Visible Human Project) model, as well as scaled models. Measurements were also performed for SAM phantom wearing a simplified prototype for a wireless device for validation of the simulation results. It has been found that children are more vulnerable to such exposure, and these devices could cause some biological effects for relatively lower power compared to conventional mobile pones.

  • PDF

Development of Doppler Radar Using Compact Dual-Circularly Polarized Antenna (소형 이중 원형편파 안테나를 이용한 도플러 레이다 개발)

  • Kim, Tae-Hong;Lee, Hyeonjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • In this paper, we developed the compact Doppler radar using the compact dual-circularly polarized antenna for medical application. The operating frequency is 2.47 GHz for considering ISM band. In order to decrease the size of the entire system, we designed the compact antenna and located the circuit board at the back of the antenna. The simulation of the proposed antenna was performed by the finite difference time domain (FDTD) method. The total volume of the proposed system is $65{\times}45{\times}6mm^3$ including the antenna. From the experiment, the developed bio-radar could be used to support the device for medical applications.

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF

Broadbanding of a Planar Antenna with Three Frequency Bands and Its Application

  • Matsui, Hiroyasu;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.725-735
    • /
    • 2007
  • This paper describes a line element planar antenna with three frequency bands. To obtain broadband characteristics, a modified planar antenna that has semi-elliptical elements based on the characteristics of a line element planar antenna is proposed and analyzed by the finite difference time domain method. Return loss characteristics are discussed as functions of the eccentricity values of semi-ellipse at each element. The broadbanding of the modified planar antenna is implemented based on the results. The planar antenna with three systems (an 800 MHz band cellular phone, a third-generation cellular phone, and a 2.4 GHz band wireless LAN system) is considered as an application example.

  • PDF

A Study on Backscatter Field Reduction of the Curved Aluminum Plate using Active Cancellation Circuit (능동 상쇄 회로를 이용한 곡면 알루미늄 판의 Backscatter Field 감쇄 연구)

  • Kim, Junhwan;Chung, Young-Seek;Cheon, Changyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.276-279
    • /
    • 2015
  • This paper propose a method to reduce the backscatter field of the curved aluminum plate using the cancellation system. The cancellation circuit is composed of a circulator, a LNA(Low Noise Amplifier), a VGA(Variable Gain Amplifier) and two phase shifters. Prior to experiment, we performed simulations to confirm the possibility using FDTD(Finite Difference Time Domain) simulator. We confirmed that the backscatter field could be reduced by the cancellation circuit when we changed the appropriate gain and phase. Finally, we performed an experiment to verify the performance of the cancellation circuit.

Image reconstruction algorithm for Breast cancer by electromagnetic field (전자파를 이용한 유방암 영상 복원 알고리즘)

  • Lee, Youn-Ju;Kim, Hyuk-Je;Lee, Jong-Moon;Son, Seong-Ho;Jeon, Soon-Ik
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1089-1090
    • /
    • 2008
  • In this paper, it is applied the reconstruction algorithm to detection of breast cancer. To solve the forward and inverse problem, Finite-Difference Time-Domain (FDTD), Tikhonov regularization and Gauss-Newton method are used. And to confirm the accuracy of the algorithm, it is applied to arbitrary model.

  • PDF

A Study on Design and Fabrication of Complex Type EM Wave Absorber with Super Wide-band Characteristics

  • Kim Dae-Hun;Kim Dong-Il;Choi Chang-Mook;Son Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In order to construct an Anechoic Chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the Equivalent Material Constant Method(EMCM) and Finite Difference Time Domain(FDTD). The proposed absorber is to attach a pyramidal absorber onto a hemisphere-type absorber on a cutting cone-shaped ferrite. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

The Characteristic Analysis of the Cross-shaped Microstrip Slot Antenna with the Reflector for Permittivity and Height of Dielectrics

  • Jang, Yong-Woong;Shin, Ho-Sub;Oh, Dong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.183-186
    • /
    • 2000
  • We analyzed the cross-shaped microstripline-fed slot antenna with the reflector using FDTD(Finite-Difference Time-Domain) method in this paper. The proposed antenna uses RR Duroid-5880 substrate(relative permittivity 2.2 and height(1.578 mm) of dielectrics), and compares the optimized results of other kind substrates. The maximum bandwidth of the proposed antenna is from 1.91 GHz to 5.21 GHz, which is approximately 1.437 octave for the VSWR $\leq$ 2. It was found that the bandwidth of the antenna depend highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The experimented data for the VSWR and the radiation pattern of the antenna are also represented.

  • PDF

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.432-442
    • /
    • 2012
  • In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.