Browse > Article
http://dx.doi.org/10.3807/JOSK.2012.16.4.432

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators  

Dolatabady, Alireza (Optical Communication Lab., Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Granpayeh, Nosrat (Optical Communication Lab., Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.16, no.4, 2012 , pp. 432-442 More about this Journal
Abstract
In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.
Keywords
Surface plasmon polariton; Nanodisk resonator; Optical logic gate; Optical processing;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 M. Farahani, N. Granpayeh, and M. Rezvani, "Broadband zero reflection plasmonic junctions," J. Opt. Soc. Am. B 29, 1722-1730 (2012).
2 J. H. Jung and M. W. Kim, "Optimal design of fiber-optic surface plasmon resonance sensors," J. Opt. Soc. Korea 11, 55-58 (2007).   DOI   ScienceOn
3 K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010).   DOI   ScienceOn
4 H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2910-2915 (2011).   DOI
5 H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, "Cascaded logic gates in nanophotonic plasmon networks," Nature Commun. 1388, 1-5 (2011).
6 I. S. Maksymov, "Optical switching and logic gates with hybrid plasmonic-photonic crystal nanobeam cavities," Phys. Lett. A 375, 819-921 (2011).
7 G. Y. Oh, D. G. Kim, and Y. W. Choi, "All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack," in Proc. Opto Electron. and Commun. Conference (Japan, 2010), pp. 374-375.
8 Q. Xu and M. Lispon, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007).   DOI
9 T. K. Liang, L. R. Numes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaetrs, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using twophoton absorption in silicon waveguides," Opt. Commun. 256, 171-174 (2006).
10 J. H. Kim, B. K. Kang, Y. H. Park, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, "All-optical AND gate using XPM wavelength converter," J. Opt. Soc. Korea 5, 25-28 (2001).   DOI   ScienceOn
11 S. Kaur and R. S. Kaler, "Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier," J. Opt. Soc. Korea 16, 13-16 (2012).   DOI   ScienceOn
12 T. Yabu, M. Geshibo, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2009).
13 Y. H. Pramono and Endarko, "Nonlinear waveguide for optical logic and computation," J. Nonlin. Opt. Phys. and Mater. 10, 209-222 (2001).   DOI   ScienceOn
14 H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010).   DOI
15 T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, "The transmission characteristics of surface plasmon polaritons in ring resonator," Opt. Express 17, 24096-24101 (2009).   DOI
16 Y. Hwang, J. E. Kim, H. Y. Park, and C. S. Kee, "Plasmonic stop band formation in a metal-insulator-metal ring with a narrow gap," J. Opt. 13, 075006-5 (2011).   DOI   ScienceOn
17 A. Boltasseva, "Plasmonic components fabrication via nanoimprint," J. Opt. A: Pure Appl. Opt. 11, 114001-114012 (2009).   DOI   ScienceOn
18 C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, AZ, USA, 1989).
19 A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, MA, USA, 2005).
20 V. P. Nelson, H. T. Nagel, B. D. Carrol, and J. D. Irwin, Digital Logic Circuit Analysis and Design (Prentice Hall, NJ, USA, 1995).
21 J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides," Opt. Express 13, 9652-9659 (2005).   DOI
22 R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nat. Photon. 1, 303-305 (2007).   DOI
23 S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-a route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001).   DOI
24 P. Tuchscherer, "Analytic coherent control of plasmon propagation in nanostructures," Opt. Express 17, 14235-14259 (2009).   DOI
25 W. L. Barnes, A. Darnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 242, 824-830 (2003).
26 Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7554 (2009).   DOI
27 N. Talebi, A. Mahjoubfar, and M. Shahabadi, "Plasmonic ring resonator," J. Opt. Soc. Am. B 25, 2116-2122 (2008).   DOI   ScienceOn
28 J. Jung, "Optimal design of dielectric-loaded surface plasmon polaritons waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010).   DOI   ScienceOn
29 D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4, 83-91 (2010).   DOI
30 E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscales dimensions," Science 311, 189-193 (2006).   DOI   ScienceOn
31 B. Jafarian, N. Nozhat, and N. Granpayeh, "Analysis of a triangular-shaped plasmonic metal-insulator-metal Bragg grating waveguide," J. Opt. Soc. Korea 15, 118-123 (2011).   DOI   ScienceOn
32 H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, "Multi-channel plasmonic waveguide filters with disk-shaped nanocavities," Opt. Commun. 284, 2613-2616 (2011).   DOI   ScienceOn
33 A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass\band-stop plasmonic filters with hollow-core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011).   DOI   ScienceOn
34 G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, "Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonator at telecommunication regime," Opt. Express 19, 3513-3518 (2011).   DOI
35 Z. Lu and W. Zhao, "Nanoscale electro-optic modulators based on grapheme-slot waveguides," J. Opt. Soc. Am. B 29, 1490-1496 (2012).   DOI
36 S. Kim, Y. T. Byun, D. G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010).   DOI   ScienceOn