• 제목/요약/키워드: Finite volume method(FVM)

검색결과 137건 처리시간 0.028초

화재 발생시 환기방식에 따른 지하공동구내 열유동 특성 연구 (Characteristics of Fire-induced Thermal-Flowfields in an Underground Utility Tunnel with Ventilation)

  • 김홍식;황인주;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1845-1850
    • /
    • 2003
  • The underground utility tunnels are important facility as a mainstay of country because of communication developments. The communication and electrical duct banks as well as various utility lines for urban life are installed in the underground utility tunnel systems. If a fire breaks out in this life-line tunnel, the function of the city will be discontinued and the huge damages are occurred. In order to improve the safety of life-line tunnel systems and the fire detection, the behaviors of the fire-induced smoke flow and temperature distribution are investigated. In this study we assumed that the fire is occurred at the contact or connection points of cable. Numerical calculations are carried out using different velocity of ventilation in utility tunnel. The fire source is modeled as a volumetric heat source. Three-dimensional flow and thermal characteristics in the underground tunnel are solved by means of FVM (Finite Volume Method) using SIMPLE algorithm and standard ${\kappa}-{\varepsilon}$ model for Reynolds stress terms. The numerical results of the fire-induced flow characteristics in an underground utility tunnel with different velocity of ventilation are graphically prepared and discussed.

  • PDF

Numerical Modelling of Temperature Distribution and Pressure Drop through the Layered Burden Loading in a Blast Furnace

  • Yang, Kwang-Heok;Choi, Sang-Min;Chung, Jin-Kyung
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2009
  • Analysis of the internal state of the blast furnace is necessary to predict and to control the operating conditions. Especially, it is important to develop models of the blast furnace to predict the cohesive zone because shape of the cohesive zone influences overall operating conditions of blast furnace such as gas flow, chemical reactions and temperature. Because many previous blast furnace models have assumed cohesive zone to be fixed, it was not possible to evaluate the shape change of cohesive zone in relation with operating conditions such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace processes. In this model, cohesive zone is determined by the solid temperature. Finite volume method is employed for numerical simulation. To find location of the cohesive zone, entire calculation procedure is iterated until converged. Through this approach, shape of the cohesive zone, velocity and temperature within the furnace are predicted from the model.

  • PDF

CVD 반응기 내에서의 유동장에 대한 샤워헤드 지름의 영향에 대한 수치적 연구 (EFFECTS OF SHOWERHEAD DIAMETERS ON THE FLOWFIELDS IN A RF-PECVD REACTOR)

  • 김유재;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1475-1480
    • /
    • 2004
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) process uses unique property of plasma to modify surfaces and to achieve the high deposition rates. In this study, a vertical thermal RF-PECVD (Radio Frequency-PECVD) reactor is modeled to investigate thermal flow and the deposition rates with various shapes of the showerhead. The showerhead in the CVD reactor has the shape of a ring and gases are injected in parallel with the susceptor, which is a rotating disk. In order to achieve the high deposition rates, we have simulated the thermal flow fields in the reactor with several showerhead models. Especially the effects of the number of injection holes and the rotating speed of the susceptor are studied. Using a commercial code, CFDACE, which uses FVM (Finite Volume Method) and SIMPLE algorithm, governing equations have been solved for the pressure, mass-flow rates and temperature distributions in the CVD reactor. With the help of the Nusselt number and Sherwood number, the heat and mass transfers on the susceptor are investigated. In order to characteristics of measure the flatness of the layer, furthermore, the relative growth rate (RGR) is considered.

  • PDF

제트 노즐의 배치가 콴다 날개의 성능에 미치는 영향 (Influence of Jet Nozzle Arrangement on the Performance of a Coanda Foil)

  • 서대원;김종현;김효철;이승희
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.569-578
    • /
    • 2008
  • The Coanda effects demonstrate that a jet stream applied tangential to a curved surface can generate lift force by increasing the circulation. Many experimental and numerical studies have been performed on the Coanda effect and it is found to be useful in various fields of aerodynamics. The Coanda effect may have practical application to marine hydrodynamics since various control surfaces are being used to control behaviors of ships and offshore structures. In the present study, numerical computations are performed to find the applicability of the Coanda effect to the marine control surfaces. For the purpose, changes in flow characteristics around a flapped foil due to the Coanda effect have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM). In the process, special attention has been given to the influence of jet nozzle arrangement on the lift characteristics of the Coanda foil. It is found that the shape as well as the location of the jet intake and jet exit affects the lift performance of the foil significantly.

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

직접분사엔진의 분사압력 변화에 따른 유동장 및 분무특성에 대한 수치해석적 연구 (Numerical Simulations of the Injection Pressure Effect on the Flow Fields and the Spray Characteristics in Direct Injection Engine)

  • 양희천;정연태;유홍선
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2339-2358
    • /
    • 1993
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of injection pressure effects on the characteristics of gas flow fields and sprays were preformed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k-.epsilon. model which included the compressibility effects due to the compression/expansion of piston was used. The results of the numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of the spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during the fuel injection periods. It was found that as the injection pressure increased, the evaporation rate of droplets was decreased due to the narrow width of spray and the increased number of droplets impinged on the bottom of the piston bowl.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

자유표면을 가지는 점성 유동장내의 기포거동에 관한 기초해석 (Basic Analysis of Bubble Behavior in the Viscous Flow Domain with the Free Interface)

  • 박일룡;전호환
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.16-27
    • /
    • 2002
  • 이유체 비압축성 점성 유동장내에서의 이차원 기포의 운동과 변형을 레벨셋 방법을 도입하여 해석하였다. 지배방정식은 유한체적법을 사용하여 해석하였다. 본 방법의 수치계산결과는 발표된 실험결과와 계산결과의 비교를 통해 검증하였다. 수치계산에서는 초기상태에 유동장 내에 두 유체의 비교란 자유표면이 존재할 때 단일 및 다수의 기포의 운동과 변형을 해석하였다. 해석을 통해 표면장력의 변화와 밀도비의 변화에 따른 기포거동의 변화를 살펴볼 수 있었다. 자유표면은 기포가 자유표면으로 상승할 때 기포의 거동에 큰 영향을 끼친다. 레벨셋법을 사용하여 계산된 본 연구의 결과들을 통해서 기포거동의 특성을 살펴볼 수 있었다.

원형 실린더가 존재하는 밀폐계의 종횡비 변화가 3차원 자연대류 현상에 미치는 영향 (Effect of Aspect Ratio of Enclosure with Inner Circular Cylinder on Three-Dimensional Natural Convection)

  • 이정민;서영민;하만영
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.717-726
    • /
    • 2016
  • 본 연구는 밀폐계 내부에 고온의 원형 실린더가 존재할 때, 밀폐계의 종횡비 변화에 따른 밀폐계 내부의 3차원 자연대류 현상에 대해 수치해석을 수행하였다. 밀폐계 내부의 원형 실린더는 유한체적법(FVM)에 기초한 가상 경계법(IBM)을 사용하여 구현하였다. 본 연구에서 고려한 Rayleigh 수의 범위는 $10^5{\leq}Ra{\leq}10^6$이며, Prandtl 수는 0.7이다. 밀폐계의 폭을 변화하여 밀폐계의 종횡비를 증가시켰으며, 밀폐계의 종횡비는 $1{\leq}W/L{\leq}4$ 범위에서 1 간격으로 고려하였다. 본 연구에서 고려한 모든 Rayleigh 수와 밀폐계의 종횡비 범위에서 열유동장은 x=0 단면을 기준으로 좌우 대칭을 이루며 정상상태에 도달하였다. 또한 밀폐계의 종횡비가 증가할수록 원형 실린더의 표면 평균 Nusselt수는 증가하는 반면, 밀폐계 벽면의 표면 평균 Nusselt수는 감소하였다.

회전 구동용 헤드 슬라이더의 부상높이에 관한 연구 (A Study on Flying Height of Head Slider in Rotary Type Actuator)

  • 이재헌;최동훈;윤상준;김광식
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1886-1896
    • /
    • 1991
  • 본 연구에서는 부상높이를 예측할 수 있는 방법을 개발하고 연관된 변수들의 변동에 따른 부상높이를 검토함으로써 불안정한 극소 공기막 형성시 유발되는 자기헤 드와 하드 디스크간 정보손실 및 하드 디스크의 표면손상을 막고 고성능 자기기억장치 설계에 도움이 되고자 한다.