• 제목/요약/키워드: Finite volume method(FVM)

검색결과 137건 처리시간 0.02초

2차원 2단 혼합층에서의 초음속 연소에 관한 수치해석 (Numerical Investigation of Supersonic Combustion on Two-dimensional Double Shear Layer)

  • 김동민;백승욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.285-288
    • /
    • 2008
  • 본 연구는 연료(수소)층과 산화제(공기)층의 사이에 불활성기체(질소)또는 연료(수소)를 평행분사하는 수치해석을 다루고 있다. 수치해석을 위해서 완전 보존되는 비정상 2차 시간정확도법과 2차 TVD방법이 유한 체적법과 사용되었다. 결과는 3가지 종류로 구성되어있다. 첫째는 연료와 산화제의 단일 혼합층이고, 둘째는 연료와 산화제의 사이에 불활성기체를 분사하는 방식이며, 세 번째는 연료와 산화제의 사이에 연료를 분사하는 방식이다. 전체 유동층의 수직두께는 4cm이며 삽입된 중간층의 두께는 1,2,4mm의 세가지 경우에 대하여 계산하였다.

  • PDF

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei;Zhang, Li-Jie;Zhang, Ning;Hu, Fei;Jiang, Yin;Xuan, Chun-Yi;Jiang, Wei-Mei
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.519-528
    • /
    • 2010
  • A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

원통형 화학증착로에서 균일한 박막형성을 위한 입구 농도분포의 최적화 (Optimization of inlet concentration condition for uniform film growth in a cylindrical CVD chamber)

  • 조원국;최도형;김문언
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.173-183
    • /
    • 1998
  • An optimization procedure to find the inlet concentration profile that yields the most uniform deposition rate in a cylindrical CVD chamber has been developed. Assuming that the chemical reaction time is negligibly small, a SIMPLE based finite-volume method is adopted to solve the fully elliptic equations for momentum, temperature, and concentration. The inlet concentration profile is expressed by a linear combination of Chebyshev polynomials and the coefficients of which are determined by the local random search technique. It is shown that the present method is very effective in improving the uniformity of the deposition rate, especially when Re is high and/or the wafer is placed close to the inlet. The optimal profiles have been obtained for various Re, Gr, and geometry combinations.

Motion Behavior of Platform Supply Vessels Running Under Regular Wave Conditions in RANS Model

  • Park, Huiseung;Jang, Hoyun;Ahn, Namhyun;Yoon, Hyunsik
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.366-372
    • /
    • 2019
  • This study performed a numerical analysis of a 3D unsteady viscous flow in order to investigate ship motion responses running through regular waves of the platform supply vessel. The feasibility of numerical analysis was tested under the three regular wave conditions of the KRISO container ship (KCS) suggested at the 2010 Gothenburg CFD Workshop. The resulting resistance coefficient, heave motion, and pitch angle were compared with the model test of the harmonic analysis. Also, the ship motion response characteristics of the platform supply vessel were performed using the proven method of the KRISO container ship (KCS). The ship motions including the resistance coefficient, heave motion, and pitch angle according to the time series were investigated via harmonic analysis under regular waves condition of ${\lambda}/LPP=1.87$ and $H_S=0.078m$.

이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링 (Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery)

  • 김승혁;이종민;윤인섭
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2012
  • 전 세계적으로 주목받는 탄소 포집 및 저장 기술(CCS)은 현재 많은 연구가 이루어져서 대규모 탄소 포집이 가능한 시점에 있다. 이에 대규모 이산화탄소 포집에 적합한 저장 기술 또한 주목을 받고 있는데, 그 중 하나가 이산화탄소 원유 회수증진 공정($CO_2$-EOR)이다. 이는 이산화탄소의 지중저장은 물론 원유 회수를 증가시키므로, 환경적인 측면과 경제적인 측면을 모두 만족시킬 수 있는 방법이라고 할 수 있다. 본 연구에서는 다공성 매질인 저류층을 통과하는 원유와 이산화탄소 혼합유체의 흐름을 모델링하고, 모델링을 통해 이산화탄소 저장 및 원유 회수 증진의 효과를 보이고자 하였다. 혼합유체를 모델링하기 위해 Darcy-Muskat의 법칙으로부터 확산성, 점도 변화를 추가 고려하여 저류층 내 압력과 포화도를 계산하였고, 수치 해석적 모델링을 위해서 유한체적법(finite volume method)을 이용하였다. 그 결과, 저류층 내 원유와 물, 이산화탄소를 주입했을 경우 각 주입물질별 시간에 따른 압력과 포화도의 변화를 예측할 수 있었고, 이산화탄소 주입 방법이 물을 주입하는 방법보다 원유 회수 측면에서 더 유리한 것을 확인할 수 있었다.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • 제7권4호
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

OpenFOAM을 이용한 주형체 활주선의 저항 및 항주자세 추정 (Prediction of Resistance and Planing Attitude for Prismatic Planing Hull using OpenFOAM)

  • 쉬샹위;장양;염덕준
    • 한국해양공학회지
    • /
    • 제33권4호
    • /
    • pp.313-321
    • /
    • 2019
  • The prediction of the hydrodynamic performance of a planing hull vessel is an important and challenging topic for computational fluid dynamic (CFD) applications to naval hydrodynamics. In this paper, the resistance and planing attitude analysis for a Fridsma hull, which is a prismatic planing hull, in still water are numerically studied using OpenFOAM. OpenFOAM is an open source code package based on C++ libraries and the finite volume method (FVM) for the discretization of the RANS equation. The volume of fluid method (VOF) is used to capture the water-air interface and the SST ${\kappa}-{\omega}$ model is used for the turbulence simulation. The overset mesh method is used to capture the large motion of the hull at higher speeds. Before the extensive analysis, uncertainty analyses using various time steps and grid sizes were performed for one ship speed case of Fn = 1.19. The results of the present study are compared with those of a model test, other CFD research, and Savitsky's empirical formula. The results of the present study, following the trend of other CFD results, slightly over predict the resistance and under predict the sinkage and, more significantly, the trim.

게이트 수에 따른 단조형 인서트와 주물재 사이의 경계부 특성 분석 (Effect of Gate Number on the Characteristics of Interface between Cast and Forged Insert)

  • 이성문;이혜경;이건엽;문성민;문영훈
    • 열처리공학회지
    • /
    • 제22권2호
    • /
    • pp.95-100
    • /
    • 2009
  • In this study, the casting process using forged insert was investigated to characterize the manufacturing process by which good mechanical properties can be obtained when compared with existing casting products. Process analysis for the casting design was performed by using FVM (Finite Volume Method) software. In pouring process, three kinds of candidate gating systems are considered and analyzed respectively. The molten metal behavior in gating system is so important that it affects the solidification behavior of the cast. The results show that as the number of gates is increased, hardness of cast was increased and gaps of cast with forged insert were decreased.

마이크로 정량펌프의 유동해석과 작동성능 평가 (The Flow Analysis and Evaluation of the Peristaltic Micropump)

  • 박대섭;최종필;김병희;장인배;김헌영
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents the fabrication and evaluation of mechanical behavior for a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, the middle plate, the upper plate and the tube that connects inlet and outlet of the pump. The lower plate includes the channel and the chamber, and the plain middle plate are made of glass and actuated by the piezoelectric translator. Channels and a chamber on the lower plate are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The upper plate does the roll of a pump cover and has inlet/outlet/electric holes. Three plates are laminated by the aligner and bonded by the anodic bonding process. Flow simulation is performed using error-reduced finite volume method (FVM). As results of the flow simulation and experiments, the single chamber pump has severe flow problems, such as a backflow and large fluctuation of a flow rate. It is proved that the double-chamber micropump proposed in this paper can reduce the drawback of the single-chamber one.