• Title/Summary/Keyword: Finite plastic deformation

Search Result 679, Processing Time 0.029 seconds

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

Preform Effect on the Plastic Deformation Behavior of Workpieces in Equal Channel Angular Pressing (Equal Channel Angular Pressing 가공 중 소성 변형에 미치는 재료의 초기 형상 효과)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.382-386
    • /
    • 2006
  • Preform design is an effective means of achieving the homogeneous deformation of workpiece materials and decreased load in metal forming. However, this approach has not been applied to equal channel angula. pressing (ECAP). In this paper, plastic deformation behavior of workpieces having four different preform shapes during ECAP was investigated using finite element analyses. The results indicated that a preform design of the workpiece head has a beneficial effect on homogeneous deformation, reducing the maximum pressing load at the initial stage and eliminating folding defects at strain concentration points.

Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging (열간분말단조 공정의 열탄소성 유한요소해석)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis (재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석)

  • Kim Ji-soo;Yang Hyeon-yun;Yun Jon-do;Cho Sang-bong
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.

Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method (강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계)

  • 최한호;변상규;강범수
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

A Simplified Method to Predict the Weld-induced Deformation of Curved Plates (곡판의 용접변형 예측을 위한 간이 해석법)

  • Lee, Joo-Sung;Hoi, Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.474-481
    • /
    • 2007
  • A three-dimensional finite element model has been used to simulate the bead on plate welding of curved steel plates having curvature in the welding direction. By using traditional method such as thermal-elastic-plastic(TEP) finite element analysis. the weld-induced deformation can be accurately predicted. However, three-dimensional finite element analysis is not practical in analyzing the weld-induced deformation of large and complex structures such as ship structures in view of computing time and cost. In this study, used is the equivalent loading method based on inherent strain to illustrate the effect of the longitudinal curvature upon the weld-induced deformation of curved plates.

An Analytical Study to Reduce Plastic Deformation in Intersection Pavements (교차로 포장 소성변형 저감을 위한 해석적 연구)

  • Choi, Jun-Seong;Lee, Kang-Hun;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

On the Stability of the Permanently Bent Mini-plate in Reconstructive Surgery (플레이트의 소성변형 과정이 재건술에서 플레이트 안정성에 미치는 영향)

  • Park, Si Myung;Lee, Deukhee;Noh, Gunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.234-241
    • /
    • 2016
  • Conventional bent plate used in mandibular reconstruction surgery needs safety verification since its mechanical properties are changed due to the plastic deformation during the bending process. In this study we investigate stability of the plastically deformed plate and the plate with the same shape without plastic deformation through the finite element analysis(FEA). First we simulate the process of plate bending to fit the defect in patient. Then, the other plate is modelled to represent a customized plate with the same shape of the plastically deformed one, but without any residual stresses from plastic deformation. After binding these plates to the mandible, we conduct the masticatory simulation. Finally, we compare the resulting Von Mises stress of the customized plate and of the bent plate. The bent plate shows much higher stress than the customized one due to the residual stresses form the bending process. The study shows that plastic deformation in the plate may decrease the safety of the reconstruction surgery.

High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect (관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석)

  • Yoo, Yo-Han;Park, Khun;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity (강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측)

  • Kim K.J.;Yang D.Y.;Yoon J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF