• 제목/요약/키워드: Finite optical system

검색결과 145건 처리시간 0.023초

유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구 (A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method)

  • 박근;정현우;박만진;김동환;장동영
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

열상장비용 줌무초점망원경 설계 (Optical Design of Afocal Zoom Telescope System for Thermal Imagery)

  • 홍경희;김창우
    • 한국광학회지
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 1995
  • 열상장비용 줌망원경계통을 설계하였다. 대물경계는 4배로부터 14배까지 배율이 변화할 수 있는 줌광학계통으로 설계하였고 접안경은 초점거리 25mm의 삼중렌즈계통으로 설계하였다. 처음에는 대물경계와 접안경을 구분하여 설계하고 후에 이를 통합하여 무초점계로 설계하였다. 1st order optics에 의해 계통을 확립하고 3rd order optics에 의해 초기설계를 얻었으며 후에 유한광선추적으로 모든 고차수차를 포함하는 ray aberration 또는 angular aberration이 최소가 되도록 최적화 하였다. 최종설계를 회절광학적 MTF를 계산하여 성능을 평가하였다.

  • PDF

광 정보저장 드라이브의 동적 특성 해석 (Analysis on the Dynamic Characteristics of an Optical Storage Drive)

  • 남윤수;임종락
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.149-158
    • /
    • 1999
  • The modern trends of optical storage devices can be characterized by high density in information recording, and high bandwidth in data input/output processing rate. These make servo engineers to face with a new barrier on control system design in much more difficult way. The first step to attack this barrier will be through a systematic modeling for the dynamic characteristics of optical storage drive. in this paper, an analytical dynamic model for an optical storage drive based on FEM is drived, and compared with experimental results. Through this comparison, a practical dynamic model on the focusing and tracking motion of optical storage drive is proposed for the initiation of real control system design problem.

  • PDF

거대 스케일 광학 센서 설계를 위한 파동 시뮬레이션(Wave Simulation) 기법 연구 (Wave Simulation Technique for Large-scale Optical Sensor Designs)

  • 이용훈;권태윤;최무한
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.62-65
    • /
    • 2023
  • The wave mode calculation of a large-scale optical system in comparison to the working wavelength is practically impossible because the computational cost increases exponentially. In this paper, we propose a method that can obtain the optical mode in a large-scale optical system. The method carries out simulations by dividing the calculation area into blocks and moving along the light axis along which the light propagates. By applying this method to the calculation of resonant modes in a ring-type optical resonator, which is mainly used for ring laser optical gyro sensors, the efficiency of the proposed method was verified.

더블렛+메니스커스렌즈 대물부를 가지는 3X 스코프 개발 (Development of 3X Scope with Objective Configured with Doublet+Meniscus Lens)

  • 이동희;박승환
    • 한국안광학회지
    • /
    • 제19권4호
    • /
    • pp.487-492
    • /
    • 2014
  • 목적: 대물부의 구성이 더블렛+메니스커스 렌즈를 가지는 3X 스코프 개발에 관한 것이다. 방법: 더블렛(doublet) + 단일렌즈(singlet)의 구성을 가지는 대물부를 초기조건으로 하여 대물부의 유한광선 수차와 스코프 전체 광학계의 유한광선 수차를 최소화하도록 스코프 광학계를 최적화하여 새로운 형태의 3X 스코프를 개발하였다. 결과: 대물부의 구성을 더블렛+단일렌즈로 두고 유한광선 수차를 최소화하도록 스코프 광학계를 최적화를 하였을 때 우리는 단일렌즈는 더블렛 방향으로 오목한 메니스커스 형태의 렌즈가 되며, 더블렛과 메니스커스 렌즈 사이의 거리가 멀수록 유한광선 수차는 더욱 최소화됨을 확인할 수 있었다. 결론: 본 연구에서 우리는 3X 스코프의 대물부를 더블렛+메니스커스 렌즈 방식의 3매의 렌즈를 채택함으로서 기존의 스코프보다 유한광선 수차를 약 1/14로 줄일 수 있는 새로운 형태의 3X 스코프를 개발할 수 있었다. 이러한 수차량의 감소는 기존 스코프 보다 유효 구경을 크게 할 수 있으며 광학계의 길이를 짧게 할 수 있는 수단이 됨을 확인할 수 있었다.

마이크로 광디스크 드라이브 서스펜션의 최적 설계 (Optimal Design of Suspension for Micro Optical Disk Drive)

  • 전준호;전정일;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

충돌 부탄 화염의 분석을 위한 복합 광학 계측 기법 개발 (Development of Combined Optical System for Analysis of Impinging Butane Flame)

  • 백승환;안성수;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.69-73
    • /
    • 2005
  • Three-dimensional density distributions of an impinging and eccentric flame have been analyzed numerically and experimentally by a combined optical system with a digital speckle tomography. The flame has been ignited by premixed butane/air from air holes and impinged vertically against a plate located at the upper side of tile burner nozzle. In order to compare with experimental data, computer synthesized phantoms of impinging and eccentric flames have been made and reconstructed by a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique has been developed for the analysis of speckle displacements to investigate wall jet regions of the impinging flame including sharp variation of the flow direction and pressure gradient. The reconstructed temperatures have been compared with a temperature photography by an infrared camera and results of numerical analysis using a finite-element method.

  • PDF

스윙 암 타입 초소형 광 픽업 시스템의 방열 설계 (Micro Thermal Design of Swing-Arm Type Small Form Factor Optical Pick-up System)

  • 이지나;김홍민;강신일;손진승;이명복
    • 정보저장시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.21-25
    • /
    • 2006
  • The new multimedia information environment requires smaller optical data storage systems. However, one of the difficulties encountered in designing small form factor(SFF) optical pick-up is to emit the heat which is generated from laser diode(LD). Heat generated at the LD can reduce the optical performance of the system and the lifetime of LD. Therefore, it is important to include the thermal design in the design stage of SFF optical pick-up system for high performance and the longer lifetime of LD, and furthermore, to analyze the thermal characteristics of LD in detail micro heat transfer analysis is necessary. In the present study, micro heat transfer analysis was performed using the finite element method for the $28{\times}11{\times}2mm^3$ super slim swing-arm type optical pick-up actuator for Blu-ray disk. Two different materials were used for a swing-arm; a double layer polycarbonate/steel structure and a single aluminum structure.

  • PDF

Mechanical Design for an Optical-telescope Assembly of a Satellite-laser-ranging System

  • Do-Won Kim;Sang-Yeong Park;Hyug-Gyo Rhee;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.419-427
    • /
    • 2023
  • The structural design of an optical-telescope assembly (OTA) for satellite laser ranging (SLR) is conducted in two steps. First, the results of a parametric study of the major design variables (e.g. dimension and shape) of the OTA part are explained, and the detailed structural design of the OTA is derived, considering the design requirements. Among the structural-shape concepts of various OTAs, the Serrurier truss concept is selected in this study, and the collimation of the telescope according to the design variables is extensively discussed. After generating finite-element models for different structural shapes, self-gravity analyses are performed. To minimize the deflection and tilt of the mirror and frame for the OTA under the limited design requirements, a parametric study is conducted according to design variables such as the shapes of the upper and lower struts and the spider vane. The structural features found in the parametric study are described. Finally, the OTA structure is designed in detail to maintain the optical alignment by balancing the gravity deflections of the upper and lower trusses using the optimal combination of the parameters. Additionally, thermal analysis of the optical telescope design is evaluated.