• Title/Summary/Keyword: Finite optical system

Search Result 145, Processing Time 0.026 seconds

Finite Element Analysis for Electron Optical System of a Thermionic SEM (열전자방사형 주사전자 현미경 전자광학계의 유한요소해석)

  • Park, Keun;Jung, Huen-U.;Kim, Dong-Hwan;Jang, Dong-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1288-1293
    • /
    • 2007
  • The present study covers the design and analysis of a thermionic scanning electron microscope (SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. In the design process, the dimension and capacity of the SEM components need to be optimally determined with the aid of finite element analyses. Considering the geometry of the filament, a three-dimensional (3D) finite element analysis is utilized. Through the analysis, the beam emission characteristics and relevant trajectories are predicted from which a systematic design of the electron optical system is enabled. The validity of the proposed 3D analysis is also discussed by comparing the directional beam spot radius. As a result, a prototype of a thermionic SEM is successfully developed with a relatively short time and low investment costs, which proves the adoptability of the proposed 3D analysis.

  • PDF

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Effect of Thermal Deformation of Optical Pick-up Base on the Optical Performance (광 픽업의 열변형이 광학적 성능에 미치는 영향)

  • Kim H.;Cho S.;Lee J.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • The effect of thermal deformation of optical pick-up due to laser diode(LD) and LD driving integrated circuit on the optical performance of digital versatile disk(DVD) optical system was analyzed using the finite element analysis with initial surface residual stress conditions, and results were compared with the measured results with holographic interferometry. Ray tracing was performed using the deformed configuration of optical system.

  • PDF

Simulation of Dispersion Compensation Transmission System Using Split-Step Finite Element Method (단계 분할 유한 요소법을 이용한 분산 보상 광 전송 시스템의 시뮬레이션)

  • Hong, Soon-Won;Lee, Ho-Joon
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.79-86
    • /
    • 1999
  • A simulation of 10 Gbps optical fiber transmission system using DCf(dispersion compensating fiber) for the dispersion compensation is performed. In order to analyze the NRZ pulse propagation in nonlinear, dispersive and lossy fiber, the split-step finite element method that is combination of finite element method and finite difference method is used. Also, we obtained the optical eye diagram and BER characteristics at the receiver of the system that is contained the optical amplifier and system noises. As a result of simulation, we obtain that the dispersion penalty is about 0.8dB after 50km transmission and the receiver sensitivities at $10^{-9}$ BER are -27.4dBm with EDFA pre-amplifier of 12dB gain and -15.6dBm without EDFA.

  • PDF

Finite Element Analysis on Vibration Characteristics of an Optical Disk Drive (광디스크 드라이브의 진동특성에 대한 유한요소해석)

  • 박건순;임종락;한용희;손희기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.227-232
    • /
    • 1998
  • This work focuses on the analysis of dynamic characteristics of an optical disk drive, Dynamic performance of the drive plays an important role in the design of a mechanism where the quality of servo mainly affected by the quality of controlling focus error and tracking error, A finite element model of the optical disk drive is presented to demonstrate its dynamic behaviors. Experimental results for the drive are presented and compared to predictions from the finite element model for verification. Using the finite element model, dynamic responses are predicted under internal and external excitations. Some design parameters of the vibration isolators are presented, satisfying the requirements of DVD drive system.

  • PDF

A study on the development of CAD system for the design of lens of the turn signal lamp (자동차 방향지시등 렌즈설계를 우한 CAD 시스템의 개발에 관한 연구)

  • 이재원;이우용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.89-95
    • /
    • 1993
  • This paper presents the development of CAD system for the design of lens of the Turn Signal Lamp that can model and simulate its optical performance. The system consists of three main modules: skin surface modeling module, inner lens modeling module and optical performance simulation module. Skin surface geometry can be modeled by the input of data file and inner lens can be modeled by the input of only four parameter using its geometric characteristics. Also light distribution pattern, the barometer of optical performance is generated by means of finite ray tracing method. The system display modeled geometry, ray tracing and generated light distribution pattern.

  • PDF

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Curvature Linear Equation of a Coma Corrected Two-Mirror System with Finite Object Distance (유한 물체거리를 갖는 코마수차가 보정된 2 반사경계의 곡률선형방정식)

  • Hwang, Seok-Ju;Rim, Cheon-Seog;Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2007
  • We derived analytically the generalized curvature linear equation useful in the initial optical design of a two-mirror system with finite object distance, including an infinite object distance from paraxial ray tracing and Seidel third order aberration theory for coma coefficient. These aberration coefficients for finite object distance were described by the curvature, the inter-mirror distance, and the effective focal length. The analytical equations were solved by using a computer with a numerical analysis method. Two useful linear relationships, determined by the generalized curvature linear equations relating the curvatures of the two mirrors, for the cancellation of each aberration were shown in the numerical solutions satisfying the nearly zero condition ($<10^{-10}$) for each aberration coefficient. These equations can be utilized easily and efficiently at the step of initial optical design of a two-mirror system with finite object distance.

The Integrated Surface Plasmon Resonance Sensor using Polymer Optical Waveguide (폴리머 광도파로를 이용한 집적형 표면 플라즈몬 공명 센서)

  • Oh, Geum-Yoon;Kim, Doo-Gun;Kim, Hong-Seung;Lee, Tae-Kyeong;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.433-436
    • /
    • 2012
  • We propose a novel micro surface plasmon resonance (SPR) sensor system based on polymer materials. The proposed SPR system consists of the incident medium with polymer waveguide and the gold thin film for sensing area. Using a polymer optical waveguide instead of a prism in SPR sensing system offers miniaturization, low cost, and potable sensing capability. The whole device performance was analyzed using the finite-difference time domain method. The optimum gold thickness in the attenuated total reflection mirror of polymer waveguide is around 50 nm and the resonance angle to generate surface plasmon wave is 68 degrees.