• Title/Summary/Keyword: Finite metal

Search Result 1,312, Processing Time 0.021 seconds

Optimal Design of the Forging Processes of Flare Nut for Automobiles using Finite Element Analysis (유한요소해석에 의한 승용차용 플레어 너트 단조공정의 최적설계)

  • 추덕열;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2004
  • Flare nut is an important Part that used to joint a brake tube-end in automobiles. It was made of SWCH 10A by machining. But we studied to make it by metal forming. The main focus of this paper is to investigate an optimal forging processes for flare nut using the DEFORM$^{TM}$-3D. commercially available finite element code and tests. Actually an explicit finite element analysis of the flare nut forging processes has been carried out to predict an optimal shape of the flare nut and its results were reflected in the tests of the forging processes design for flare nut. The simulation results which had obtained from finite element analysis were contributed to the forging processes design for flare nut. An optimal shape of nave nut showed agreements with test results. Furthermore. this paper should contribute to a development of the forging process for a variety of parts.s.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

A Study on the Calculating Method of the Heat Input Efficiency in Arcspot Welding (아크 스폿 용접의 입열효율 계산 방법에 관한 연구)

  • Jang, Kyoung-Bok;Cho, Sang-Myoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1065-1070
    • /
    • 2003
  • In arc spot welding process, the arc is not moving and heat input is concentrated in one spot so that the heat input efficiency of arc is higher than that of GMAW. In other words, the heat input efficiency of arc change during weld time because arc start is done in spot and weld metal is filled. Therefore, the heat input model of arc spot welding should be different from that of general GMAW. In present study, the calculating model of heat input efficiency in arc spot welding was suggested by temperature monitoring near spot in arc spot welding of copper plate. The result showed that the heat input efficiency of arc was changed three times during weld time. The accuracy of calculating method of heat input efficiency was verified by heat transfer analysis of arc spot welding process using finite element method.

A Study on Die Wear Model considering Thermal Softening(II) -Application of Suggested Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(II) -마멸모델의 적용)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.282-290
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes tool life depends on wear over 70%. In this study finite element analyses are con-ducted to warm and hot forging by adopting suggested wear model. By comparison of simulation and eal profile of die suggested wear model. By comparison of simulation and real profile of die suggested model is verified.

  • PDF

FE Analysis of Extrusion Process for Heat sink (방열판 직접압출 공정의 유한요소해석)

  • 이정민;김병민;조형호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.313-317
    • /
    • 2003
  • Porthole die extrusion is the method which put the billet in the container and push it between die hole by ram. This method make it possible that product manufacture which have complex shape of area with excellent induction of area, in addition that this is economical. So this method is used as the basic manufacturing method of many industrial materials. The subject of this research is the forming technology development of heat sink which is being produced by extrusion process in my country. Flow condition of extrusion for heat sink, and metal flow of billet in the die are estimated by the means of rigid-plasticity finite element method.

  • PDF

Analysis for Properties of Ceramic/Metal Composite Based on Micromechanics of materials (세라믹/금속복합재료에 대한 미시역학적 특성해석)

  • 김병식;김태우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.144-148
    • /
    • 2001
  • A proper estimation of the mechanical properties for composites has been required for better design/selection of constituents for composite materials. Present investigation shows the simulation results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting transverse mean stress with the transverse mean strain was described for composites as a function of the volume fraction with two different types of interfacial bonding: (1)strongly bonded interface, and (2)no bonded interface. A two-dimensional finite element modeling and analysis were conducted based on the unit-cell concept with an assumption of a regular square arrangement of the reinforcement within the composite. The mean stress was generally increased with the ceramic volume fraction for composite with strong interface bonding. The micromechanics concept combined with finite element modeling for composite can be used in order to predict the transverse properties of composites with a priori known properties of constituents.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

Analysis of Temperature Distribution and Residual Stress in Deposition Process of Metal Droplet by Using Laser Beam (레이저를 이용한 금속액적 적층시 온도분포와 잔류응력 해석)

  • Yun Jin-Oh;Yang Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.187-193
    • /
    • 2005
  • The temperature distribution of the deposited droplet was predicted by using the finite element analysis and it was assumed that the droplet was axisymmetrical model. The analysis of residual stress was performed with the temperature data, which is obtained from the result. Axisymmetric droplet is deposited three times to consider the actual phenomenon of droplet deposition. The analysis of the temperature distribution is respectively performed whenever the axisymmetric droplet is laminated and the residual stresses of the laminated axisymmetric droplet are calculated with the value of the temperature distribution.

판재성형의 유한요소해석

  • 강정진;오수익;정영철;박종진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2000
  • Recently, finite element method has been used as an effective tool in the design process of sheet metal forming. In the present study, an implicit method and an explicit method have been developed for 2D analysis and 3D analysis, respectively, and applied to several processes including plane strain draw bending and TWB sqaure cup drawing. Also, commercial codes are used for geometrically complex problems, such as tube hydroforming, "L" cup deep drawing and side frame forming. In this paper, basic formulations used in the methods are introduced and results obtained from the applications are discussed.discussed.

  • PDF

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes(Part 2:Modeling) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(2부: 모델링))

  • Keum, Yeong-Tak;Lee, Jae-U
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.12-22
    • /
    • 1998
  • An expert drawbead model is developed for the finite element analysis of stamping processes. The expert model calculates drawbead restraining forces and bead-exit thinnings with the forming condi-tions and drawbead size. The drawbead restraining forces and bead-exit thinnings of a circular draw-bead and stepped drawbead are computed by mathematical models and corrected by the multiple lin-ear regression method based on experimental measurements. The squared drawbead preventing the sheet from drawing-in inside die cavity is assumed to have a very huge drawbead restraining force and no pre-strain just after drawbead. The combined beads are considered as a combination of basic draw-beads such as circular a drawbead stepped drawbead and squared drawbead so that the drawbead restraining forces and bead-exit thinnigs are basically sum of those of basic drawbeads.

  • PDF