• Title/Summary/Keyword: Finite fatigue life

Search Result 449, Processing Time 0.027 seconds

A study on the shape optimization of ship's bellows (선박용 벨로우즈의 형상최적화에 관한 연구)

  • Kim J.P.;Kim H.S.;Kim H.J.;Cho W.S.;Jeh S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1303-1306
    • /
    • 2005
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is favorable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element method. The effective factors, mountain height, length, thickness, and number of mountains and the length of joint are considered and the proper values are chosen for the simulation. The results shows that if the number of mountains are reduced, the volume decreases while the stress increases. However, the number of mountains are increased, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the volume and stress are decreasing at a certain lower value region.

  • PDF

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle (철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가)

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kim, Jae Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

CFRP strengthening of steel columns subjected to eccentric compression loading

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Steel structures often require strengthening due to the increasing life loads, or repair caused by corrosion or fatigue cracking. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been carried out on steel beams and steel columns under centric compression load. No independent article, to the author's knowledge, has studied the effect of CFRP strengthening on steel columns under eccentric compression load, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel columns under eccentric compression load. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel columns under the eccentric compression load, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine ultimate load of SHS steel columns, eight specimens with two types of section (Type A and B), strengthened using CFRP sheets, were analyzed under different coverage lengths, the number of layers, and the location of CFRP composites. Two specimens were analyzed without strengthening (control) to determine the increasing rate of the ultimate load in strengthened steel columns. ANSYS was used to analyze the SHS steel columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel columns.

A Study on The Optimum Shape of Bellows Using Response Surface Method (반응표면법을 이용한 벨로우즈의 최적형상에 관한 연구)

  • Kim H.J.;Kim H.S.;Park J.H.;Kim J.P.;Kim H.G.;Lee J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.441-442
    • /
    • 2006
  • It is attempted to find out the optimal shape of U-type bellows using the finite element analysis. The design factors, mountain height, length, thickness, and the number of convolutions are considered and the proper values are chosen fur the simulation. The results show that as the number of convolutions reduces, the volume decreases while the stress increases. However, as the number of convolutions increases, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the mass and stress are decreasing at a certain lower value region. Also, we investigated shape optimization with considering maximum stress distribution tendency.

  • PDF

A Study on the Improvement of Solder Joint Reliability for 153 FC-BGA (153 FC-BGA에서 솔더접합부의 신뢰성 향상에 관한 연구)

  • 장의구;김남훈;유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • The 2nd level solder joint reliability of 153 FC-BGA for high-speed SRAM (Static Random Access Memory) with the large chip on laminate substrate comparing to PBGA(Plastic Ball Grid Array) was studied in this paper. This work has been done to understand an influence as the mounting with single side or double sides, structure of package, properties of underfill, properties and thickness of substrate and size of solder ball on the thermal cycling test. It was confirmed that thickness of BT(bismaleimide tiazine) substrate increased from 0.95 mm to 1.20 mm and solder joint fatigue life improved about 30% in the underfill with the low young's modulus. And resistance against the solder ball crack became twice with an increase of the solder ball size from 0.76 mm to 0.89 mm in solder joints.

  • PDF

A Study of Strength Evaluation of Crankshaft Lifting Pin for Reducing Weight (대형 크랭크축 리프팅 핀의 경량화를 위한 강도평가 연구)

  • Jeon, Byung-Young;Kim, Byung-Joo;Park, Jong-Du
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.7-12
    • /
    • 2004
  • Large-sized pins are usually used to lift and handle large low speed diesel engine crankshaft. There has then been a need to reduce and optimize the weight of the traditionally used pins. Making an hole by cutting the inside of the pin out was investigated in view of static and fracture strength. To compensate the stress increase caused by the introduction of the inner hole, the groove in the circumferential direction pre-existing on the pin is to be removed. Finite element analysis was carried out for both the original model and weight reduced model. Stress intensity factors for semi-elliptical defects assumed on the pin for the original model and weight reduced model was calculated using the ASME method and compared with the fracture toughness test result of the pin material. The diameter of the cutting hole for the revised model was determined based on the analysis results.

  • PDF

An Experimental Study on Fatigue Fracture Behaviour of Surface Crack in Finite Plates and Fillet Welded T-joint (유한평판 및 T-joint 필렛 용접부에 있어서 3차원 표면균열의 피로 파괴거동에 관한 실험적 연구)

  • M.S. Han;J.D. Kim;H.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.275-284
    • /
    • 1991
  • Fatigure crack growth from surface defects is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, ship hulls and other various structures. This paper attempts to analysis some practical or general problems such as the estimation of crack growth life to penetrate the plate thickness, based on fatigure crack growth from a single surface flaw and the interaction of multiple flaws. An experiment on the coalescence of multiple undercuts was carried out under cyclic tension condition as a attempt to the analysis of multiple crack problems. It is noted that the fracture strength is characterized by the analogy to that in a single crack growth.

  • PDF

The Shape Optimization of washing Machine Shaft for High-Speed Rotation through Analysis of Static and Dynamic Characteristics (정특성 및 동특성 해석을 통한 고속세탁기 주축의 형상 최적화)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.132-139
    • /
    • 2008
  • To meet demand of big capacity and high speed rotation for washing machine, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Also, Vibration occurs due to the frequency of the rotating parts. But, shaft has various design factors such as diameter and distance between bearings according to configuration of shaft, the optimal values can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor under bending, twist and vibration and proposed optimum design using center composition method among response surface derived from regression equation of simulation-based DOE.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.