• Title/Summary/Keyword: Finite fatigue life

Search Result 449, Processing Time 0.027 seconds

Sensitivity Analyses of Finite Element Parameters of Laser Shock Peening for Improving Fatigue Life of Metalic components (금속 재료 피로수명 향상을 위한 LSP 유한요소 변수 민감도 해석)

  • Kim, Ju-Hee;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1821-1828
    • /
    • 2010
  • Laser shock peening(LSP) is an innovative surface treatment technique, and it has been successfully used to improve the fatigue performance of metallic components. It is widely known, that cracks caused by metal fatigue occur only at the location where the metal is subject to tension, and not at the location where the metal is subjected to compression. Therefore, LSP can be employed to improve fatigue life because it generates a high-magnitude compressive residual stress on the surface and interior of metallic components. In this study, we analyzed the applicability of the LSP method in improving fatigue performance and evaluated the various parameters that influence the compressive residual stress. Further, we analyzed the change in the mechanical properties such as surface dynamic stress and the compressive residual stress on the surface and interior of metallic components.

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft (eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가)

  • Young-Cheol, Kim;Dong-Hyeop, Kim;Sang-Woo, Kim;Jeong-Hyun, Kang;Dohyung, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.106-113
    • /
    • 2022
  • The structural safety of the basic design model of the linear actuator for the individual blade pitch control of eVTOL personal aircraft was investigated. Stress analysis based on the finite element method was conducted, and the margin of safety was calculated to examine the structural safety under stall load conditions. Additionally, fatigue analysis was conducted to evaluate the fatigue life of the linear actuators under operating conditions. The load history with the blade pitch angle was calculated using multi-body dynamics analysis, and the static load analysis was used to obtain the stress distribution for the rated load. As a result, it was confirmed that the safety margins exceeded zero, and the fatigue lives of all linear actuator components exceeded 107 cycles, indicating a safe structural range.

A Study on the Fatigue Crack Propagation Analysis Using Equivalent Stress Distribution (등가분포응력을 이용한 피로균열전파해석에 관한 연구)

  • C.W. Kim;I.S. Nho;K.S. Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • From the viewpoint of linear fracture mechanics, the crack propagation behavior of two different structures having the same K-a relationship could be considered identical. In this study the stress distribution in an infinitely wide cracked plate with the same K-a relationship as in a real structure is defined as the equivalent stress distribution. Fatigue life of a real structural element can be predicted by applying the equivalent stress distribution to a simple structural element, and performing a fatigue crack propagation analysis. The K-a relationship for a structural member can be estimated by a finite element method or a simplified prediction method. The validity to obtain effective crack driving stresses by using the equivalent stress-distribution is examined.

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

A Study of Fatigue Life Evaluation for the Servicing Railway Steel Bridge (정성분석기법을 이용한 공용중인 강철도교의 잔존피로수명평가에 관한 연구)

  • Park Yong-Gul;Choi Jung-Youl
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.982-987
    • /
    • 2004
  • Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in bridge structures using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis ,and evaluation, which is easily applicable in engineering practices of bridge designers. The software modules integrate techniques in the field of knowledge representation and qualitative reasoning, into the conventional fatigue analysis. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience. This paper depicts a way of complex analysis to practical engineering designs with qualitative reasoning.

  • PDF

Design Method to Reduce the Press-Fitted Assembly Dama (압입축의 파손 저감을 위한 설계 방법에 대한 연구)

  • Byon, Sung-Kwang;Choi, Ha-Young;Lee, Dong-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.128-134
    • /
    • 2021
  • A press-fitted shaft is an essential part used in industrial machines, and it is generally used to transmit large quantities of power. Very high contact pressure occurs at the end parts of the contact between the shaft and boss, which are press-fitted shaft components. Such contact pressure not only damages the contact surface of a press-fitted shaft but also reduces its fatigue strength. To improve a press-fitted shaft's fatigue strength, the contact pressure on the contact surface, which directly affects the fatigue strength, should be minimized. Thus, in this study, the design configuration optimization of the end part of the boss was based on the approximate optimization method and was aimed at minimizing the contact pressure at the end of a press-fitted shaft. Comparison of the contact pressure and the contact stress of a conventional press-fitted shaft with those of the optimized press-fitted shaft showed that the boss design of the optimized press-fitted shaft effectively improved the fatigue life.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

Effect of Interface Conditions on Flexible Pavement Fatigue Cracking Using 3D Finite Element Analysis (3차원 유한요소해석을 통한 연성포장의 층간접촉특성이 피로균열에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.109-112
    • /
    • 2007
  • To determine design or remaining life of flexible pavement, tensile strain at the bottom of asphalt concrete course and vertical strain on top of subgrade should be estimated. Various computer programs can be used for determining the strain at the critical position in pavement. However, these are conducted under the assumptions of full bonded or unbound state of layer interface conditions. This study compares the output of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of flexible pavement. It is noted that the pavement performance is significantly affected depending upon the interface conditions.

  • PDF

Failure Analysis of Connecting Rod at Small End (커넥팅로드 소단부 파단의 해석)

  • 민동균;전병희;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.382-390
    • /
    • 1995
  • Failure of connecting rod in automotive engine may cause catastrophic situation. The corner radius at small end has an effect on stress raising. To investigate the stress distribution in connecting rod during operation, the finite element analysis was used by giving possible maximum tension and compression. Excessive sizing after forging connecting rod may result in the tensile residual stress which lower the fatigue life and cause premature failures. It was shown that when the sizing amount is too large, the location of high tensile residual stress coincide with that of high stress amplitude during operation through the elastic-plastic finite element analysis. The endurance limit moves down due to the surface finish and decarburization, which combines with the movement of resultant stress points to dangerous range. It was concluded that the precise control of sizing and enough corner radius are necessary to a reliability of connecting rod.