• Title/Summary/Keyword: Finite fatigue life

Search Result 449, Processing Time 0.027 seconds

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Tearing Test for Automotive Vibroisolating Rubber and Formulation of Tearing Energy (자동차용 방진고무의 찢김시험 및 찢김에너지 정식화)

  • Moon, Hyung-Il;Kim, Heon Young;Kim, Min Gun;Kim, Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1669-1674
    • /
    • 2012
  • A commonly analytical estimation of fatigue life on rubber components is using fatigue life equation based on various fatigue test results. However, such method has very restricted applicability in actual designing processes because performing fatigue tests requires a lot of time and money. In addition, non-standard rubber materials and their randomness make it hard to make databases. In this paper, the other fatigue life estimation method using tearing energy was suggested. We performed static and dynamic tearing test about automotive vibration rubber materials and a finite element formulation using a virtual crack to calculate the tearing energy of rubber components with complicated shapes. To using the suggested method, fatigue life of an automotive motor mount has been estimated and verified the reliability of this method by using comparison between the estimated values and the actual fatigue life.

Fatigue Life Analyses and Improvement of Structural Design of a Heating Drum for the Medium Density Fiberboard (섬유판 제작용 압연프레스 가열드럼의 피로수명 해석과 구조설계 개선에 관한 연구)

  • Lee Boo Youn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.202-208
    • /
    • 2005
  • Stress and fatigue life analyses are performed to enhance a fatigue life of a heating drum of the roller press for medium density fiberboard. The finite element method employing the submodel is used to analyze stress concentration in the journal of the heating drum. The fatigue life is evaluated by the stress-life theory. Two modified designs of the journal are suggested and evaluated to reduce the maximum stress and to increase the fatigue life Their structural reliabilities are verified in terms of the yield strength and the design life.

A Study on Structure Analysis and Fatigue Life of the Common Rail Pipe (커먼레일 파이프의 구조해석 및 피로수명에 관한 연구)

  • Song, M.J.;Jung, S.Y.;Hwang, B.C.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • The next generation of diesel engine can operate at high injection pressure up to 1,800bar. The common rail pipe must have higher internal strength because it is directly influenced by the high-pressure fuel. Folding defects in the Common rail pipe can not ensure the structural safety. Therefore, Preform design and fatigue-life analysis are very important for preventing the head of the common rail pipe from folding in the heading process and for predicting fatigue life according to the amount of folding. In this study, a closed form equation to predict fatigue life was suggested by Goodman theory and pressure vessels theory in ASME Code in order to develop an optimization technique of the heading process and verified its reliability through fatigue-structural coupled field analysis. The results calculated by the theory were in good agreement with those obtained by the finite element analysis.

Fatigue and Robust Analysis for Improving the Suspended Pedal of Vehicles (차량용 서스펜디드 페달 구조체의 피로 내구 분석 및 설계 개선)

  • Lee, Woo-Hyung;Hwang, Bum-Chul;Kim, Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.105-111
    • /
    • 2009
  • This study was carried out to evaluate structural stability of the suspended plastic pedal used in vehicles and to predict its fatigue life with the results obtained from finite element analysis. And also shape optimization was performed to reduce its weight. Structural analysis of the suspended plastic pedal was based on the evaluation tests such as static test, stiffness test, and fatigue test in the actual field, which were frequently carried out in the companies manufacturing plastic pedals. The evaluation for the plastic pedal was carried out by structural and fatigue analyses using a commercial FEA program and according to it, maximum stress and strain and fatigue life of the pedal satisfied all the requirements in the evaluation tests. The results of structural analysis of the suspended plastic pedal were used in the fatigue analysis. Fatigue test was performed to verify validity of the theoretical fatigue life of the plastic pedal. And the life by theoretical calculation was in good agreement with that by the experiment. Object function for optimizing shape of the plastic pedal is its volume, and total volume of the plastic pedal was reduced to about 11.7% through shape optimization.

Effect of Metal Removal and Initial Residual Stress on Contact Fatigue Life (초기 잔류응력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Hur Hun-Mu;Goo Byeong-Choon;Choi Jae-Boong;Kim Young-Jin;Seo Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.341-349
    • /
    • 2005
  • Damage often occurs on the surface of railway wheel by wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue life by the metal removal of the contact surface were shown by many researchers, but it has not explained precisely why fatigue life increases or decreases. In this study, the effect of metal removal depth on the contact fatigue life for railway wheel has been evaluated by applying finite element analysis. It has been revealed that the residual stress and the plastic flow are the main factors determining the fatigue life. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. It has been found that the initial residual stress determines the amount of metal removal depth. Also, the effects of the initial residual stress and metal removal on the contact fatigue lift has been estimated, and an equation is proposed to decide the optimal metal removal depth for maximizing the contact fatigue life.

Fatigue Life Analysis of Butt-welded Joint with and without Postweld Heat Treatment by Local Strain Approach (국부변형률 방법을 이용한 용접후열처리 전후 시편의 피로수명 해석)

  • Lee, Dong-Hyoung;Seo, Jeong-Won;Goo, Byeong-Choon;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1086-1091
    • /
    • 2003
  • The problem of residual stresses and fatigue behavior in welded structures is the main concern of welding research fields. The residual stresses and distortions of structures by welding exert negative effect on the safety of mechanical structures. Postweld heat treatment is usually carried out to relieve this residual stresses of welded joints. In this paper the influence of postweld heat treatment on fatigue life of butt-welded joint was investigated. To predict the effect of PWHT, an analytical model is developed by finite element and local strain approach and the result of fatigue life analysis is compared to experimental results. It is demonstrated that fatigue life estimates closely approximate the experimental results and PWHT provides some increase of fatigue lives in long-life fatigue region and no increase in short-life fatigue region because of the residual stress relaxation under tensile loads.

  • PDF

Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty (모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측)

  • Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1107-1114
    • /
    • 2011
  • In this paper, the fatigue life of a laser peened structure was predicted. In order to calculate residual stress induced by laser peening finite element simulation was carried out. Modified Goodman equation was used to consider the effect of compressive residual stress induced by laser peening in fatigue analysis. In addition, additive adjustment factor approach was applied to consider S-N curve model uncertainty. Consequently, the reliable bounds of the predicted fatigue life of the laser peened structure was determined.

Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite (TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교)

  • Jo, Young-Jik;Park, Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.