• Title/Summary/Keyword: Finite fatigue life

Search Result 449, Processing Time 0.024 seconds

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

A Study on the Thermal Fatigue of Solder Joint by Package Types (패키지 유형에 따른 솔더접합부의 열피로에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF

Thermal Cycling Fatigue Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더접합부의 열사이클링 피로해석)

  • 김경섭;유정희;김남훈;장의구;임희철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. It was estimated by the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life of results was obtained at the thermal cycling testing condition of -65℃ ∼ 150℃. It was increased about 3.5 times in comparison with that of 0℃ ∼ 100℃. As the change of pad structure at the same other conditions, the fatigue life of SMD structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module (진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가)

  • Shim, Hee-Jin;Kim, Han-Chul;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

Role of Bevel Angles Influenced on the Fatigue Life of Butt-welded Joints (맞대기 이음 용접의 피로수명에 베벨 각도가 미치는 역할)

  • Park, Jihwan;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2014
  • This study aims to investigate the influence of bevel angles on the fatigue life of V-groove butt-welded joints with back-plates made by SM490A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. Butt type test specimens were prepared by the $CO_2$ welding of rolled steel plates (SM50A steel) with a thickness of 13.5 mm at a welding speed of 30 cm/min and these Butt type test specimens had two different groove angles, which are $40^{\circ}$ (A type) and $30^{\circ}$ (B type). In order to investigate differences in fatigue life between two types, 4-point bending fatigue tests were conducted with a stress ratio of R=0.1 under the cyclic loading environment at a frequency of 5 Hz at room temperature. The fatigue life of A type specimens was approximately 7% higher than that of B type specimens. The stress concentration factors calculated by finite element analysis were 2.16 for A type and 2.25 for B type, whose difference was caused by the influence of the back-plates of butt-welded structures. The current results could provide important guidelines to determine the V-groove angle of butt-welded joints with a satisfactory fatigue life, although under severe operating conditions.

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.

Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM

  • Han, Qing-Hua;Yang, Guang;Xu, Jie;Wang, Yi-Hong
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • The fatigue fracture of studs is the main reason for failure of composite beams based on massive engineering practices. Hence, studying the laws of cracks initiation and propagation are of great directive significance. eXtended Finite Element Method (XFEM) is an effective method in solving moving discontinuous problems in recent years. This paper extends our recent work on the fatigue damage analysis of stud shear connectors in the steel and crumble rubber concrete (RRFC) composite beams based on XFEM. The process of crack initiation to failure of the stud is simulated and an effective calculation criteria for the fatigue life of the composite beams is put forward. After the reliability of the numerical analysis is verified based on tests results, the extensive parametric study is conducted concerning effects of different rubber contents, shear connection degrees and the stress amplitudes. Results show that with the increasing rubber contents and shear connection degrees, the fatigue lives of composite beams increase obviously. Furthermore, the relationship between the fatigue life of the stud at the edge of the shear span and the whole composite beams is studied. Finally, the S-N curves of the single stud and the whole composite beams are put forward based on XFEM.

Investigation into Conservatism of Various Fatigue Life Evaluation Procedures Using Round-Notched CT Specimens (원형 노치 CT 시편을 이용한 다양한 피로수명평가 절차의 보수성 평가)

  • Kang, Ju-Yeon;Chang, Dong-Joo;Kim, Jun-Young;Kim, Sang-Eun;Lee, Jong-Min;Huh, Nam-Su;Kim, Jong-Sung;Kim, Jin-Weon;Kim, Yun-Jae;Kim, Dae-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • In this study, to evaluate conservatism of various fatigue life evaluation procedures, fatigue tests were conducted using compact tension (CT) specimens with a round notch, made of A516 Gr.70 carbon steel and A240 TP304 stainless steel, under load-controlled cyclic condition. Experimental fatigue failure cycles were measured and compared with predicted fatigue lives using two different life evaluation methods; (1) Design-By-Analysis (DBA) procedure given in ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200 and (2) structural stress-based approach provided in ASME B&PV Code, Sec. VIII, Div. 2, Part 5. To predict fatigue failure cycles, three-dimensional elastic finite element analysis was conducted. Fatigue lives were predicted by both design fatigue curve given in ASME B&PV Code, Sec. III, Div. 1, Appendices and best-fit fatigue curve suggested in NUREG/CR-6815 for the DBA procedure. Finally, fatigue lives evaluated by various methods were compared with test results, and then conservatism between each evaluation procedure was discussed.

Study on the Prediction of Fatigue Life of Multi-Spot Welded Joints (다점용접이음의 피로수명 예측에 관한 연구)

  • Ju, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.471-478
    • /
    • 2002
  • In real structures, multi-spot welded joints are more frequently used than a single-spot welded joint. Most researches, however, have been focused to a single-spot welded joint until now. In this paper, the fatigue behavior of multi-spot welded joints are investigated using the finite element solutions of the multi-spot welded specimens. The local strain approach is used rather than the stress intensity factor approach to estimate the fatigue life since the former is quite simple and straightforward. It is found that the fatigue behavior of multi-spot welded joints is different from that of single-spot welded joints. The local strain approach is still applicable to multi-spot welded joints.

Analysis of Fatigue Life of Spot-Welded Specimens (점용접 시편의 피로 수명 해석)

  • Chu, Young-Woo;Chu, Seok-Jae;Choi, Byung-Gil;Yum, Young-Jin;Yoo, Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.279-286
    • /
    • 1999
  • Failure of spot-weld joints in car body may cause noise, vibration and safety problems. Systematic procedures for estimating fatigue strength of general spot-weld joints are developed in this paper. Fatigue test results for various spot-welded specimens are analysed using the finite element method. It is found that the maximum principal strain at the nugget boundary on the inner surface governs the fatigue failure of spot-welded joints.

  • PDF