• 제목/요약/키워드: Finite element tire model

검색결과 44건 처리시간 0.03초

유한요소법을 이용한 타이어 코너링특성 예측에 관한 연구 (A Study for the Prediction of a Tire Cornering Characteristics using a Finite Element Method)

  • 김항우;조규종
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.151-162
    • /
    • 1998
  • During a straight driving and cornering maneuver by a vehicle various forces and moments are exerted on the tire's footprint. A cornering properties, handling and stability performances of vehicle can be predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted using a finite element method. Contact area of the tire between bead and wheel are fixed to simplify of a finite element model. Lateral force is exerted on the rigid surface as a real load with Coulum friction after inflate and load vertically. Then, rotate the tire's axle to simulate a free rolling untill taken the equilibrium of a aligning torque. Also, experimental observations are made to test a reliability of a FE analysis conducted in this study. The finite element analysis said that good agreement was obtained with experimental results of these cornering properties, giving confidence within about one percent. So it os recommended that a finite element analysis can be used as a good tool to predicted the tire cornering properties.

  • PDF

유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석 (Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method)

  • 전도형;최주형;조진래;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

타이어의 강성계수에 관한 고찰 (A Study on the Stiffness of Tire)

  • 이상선;반재삼;김항우;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

타이어 벨트 끝단의 피로수명 예측 (Fatigue Life Prediction of Tire Belt Edge)

  • 김재연;양영수;김기운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.954-957
    • /
    • 2004
  • Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.

  • PDF

회전하는 타이어의 동특성을 고려한 진동에너지 하베스터 성능 예측 (Performance Prediction of Vibration Energy Harvester considering the Dynamic Characteristics of Rotating Tires)

  • 나혜중
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.87-97
    • /
    • 2020
  • In general, tires require various sensors and power supply devices, such as batteries, to obtain information such as pressure, temperature, acceleration, and the friction coefficient between the tire and the road in real time. However, these sensors have a size limitation because they are mounted on a tire, and their batteries have limited usability due to short replacement cycles, leading to additional replacement costs. Therefore, vibration energy harvesting technology, which converts the dynamic strain energy generated from the tire into electrical energy and then stores the energy in a power supply, is advantageous. In this study, the output voltage and power generated from piezoelectric elements are predicted through finite element analysis under static state and transient state conditions, taking into account the dynamic characteristics of tires. First, the tire and piezoelectric elements are created as a finite element model and then the natural frequency and mode shapes are identified through modal analysis. Next, in the static state, with the piezoelectric element attached to the inside of the tire, the voltage distribution at the contact surface between the tire and the road is examined. Lastly, in the transient state, with the tire rotating at the speeds of 30 km/h and 50 km/h, the output voltage and power characteristics of the piezoelectric elements attached to four locations inside the tire are evaluated.

자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증 (Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel)

  • 정성필;정원선;박태원
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

타이어 가류브레더 팽창거동에 관한 유한요소해석 (A Study on the Curing Bladder Shaping of Tire by FEM)

  • 김항우;황갑운;조규종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.184-191
    • /
    • 1996
  • In curing Process of tire, Contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element, The experimental tensile tests are used to get the material properties of bladder rubber on practical conditions. Numerical analyses are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder.

  • PDF

타이어 접지문제의 유한요소 응력해석 (Finite Element Analysis of the Tire Contact Problem)

  • 한영훈;김용희;허훈;곽윤근
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.820-830
    • /
    • 1989
  • 본 논문에서는 타이어의 각 부분의 물성치 계산을 위한 식을 유한요소법에 적용할 수 있도록 제안하였다. 이 식은 강철 코드의 굽힙효과를 고려 하였으며, 특히 각 요소에서 전단변형이 일어나는 동안의 굽힘효과를 고려하였다. 유한요소 공식화는 가상일의 원리에 의하여 평형 방정식으로부터 유도하였고, Updated refer- ence coordinate에 대해 증분해석을 적용하여 Updated Lagrangian공식화를 하였다. 그리고 차량하중에 의하여 타이어가 노면에 접지될때의 응력상태를 게산할 수 있도록 접촉문제 공식화를 유한요소 공식화에 첨가 하였다.

파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동 (Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces)

  • 홍남식;이상화
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

Honeycomb 스포크로 된 비공기압 타이어의 고유진동수 해석 (Natural Frequency Analysis of a NPT with Honeycomb Spokes)

  • 조홍준;이치훈;김기홍;김감찬;김두만
    • 항공우주시스템공학회지
    • /
    • 제5권2호
    • /
    • pp.33-39
    • /
    • 2011
  • The vibration characteristic of tires is one of very important issues which heavily affect the noise and comfort on driving. Therefore, when the new tire is designed, the vibration characteristic of tire should be considered. In this paper, the vibration characteristic of non-pneumatic tire is investigated for geometric of NPT which is designed by cell angle of spoke. The analysis is based on the finite element method and used ABAQUS program, which is able to non-linear analysis. The material of NPT is used for the Ogden energy model, which is model of hyperelastic material. This paper investigate natural frequency and modal of NPT and compare result of NPT with it of pneumatic tire.