• 제목/요약/키워드: Finite element stress analysis

검색결과 4,464건 처리시간 0.039초

스프링백 특성에 영향을 미치는 수치변수의 분석을 위한 다구치 실험계획법의 응용 (Application of the Taguchi Method to the Analysis of the Numerical Parameters Influencing Springback Characteristics)

  • 김형종;전태보
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.211-218
    • /
    • 2000
  • It is desirable but difficult to predict springback quantitatively and accurately for successful tool and process design in sheet stamping operations. The result of springback analysis by the finite element method (FEM) is sensitively influenced by numerical factors such as blank element size, number of integration points, punch velocity, contact algorithm, etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on the result of springback analysis quantitatively and to obtain the combination of numerical factors which gives the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by the dynamic-explicit finite element method says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The U-draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model because it is most popular one for evaluating the springback characteristic.

  • PDF

유한체적법과 유한요소법을 이용한 응고과정에서의 열응력해석 (Analysis of Thermal Stresses During Solidification Process Using FVM/FEM Techniques)

  • 이진호;황기영
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1009-1018
    • /
    • 1994
  • An attempt is made to develop a kind of hybrid numerical method for computations of the thermal stresses during a solidification process. In this algorithm, the phase-change heat transfer analysis is perrformed by a finite volume method(FVM) and the thermal stress analysis in a solidifying body by a finite element method(FEM). The temperatures at the grid points calculated in the heat transfer analysis are transferred to those of gauss points in elements by a bi-cubic surface patch technique for the thermal stress analysis. A hyperbolic-sine constitutive law is used to prescribe the inelastic strain rate of material. Results for the unidirectional solidification process of a pure aluminum are compared with those of others and shows good agreement.

승용차 시트프레임의 강도해석 (The Strength Analysis of Passenger Car Seat Frame)

  • 임종명;장인식
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

회전 및 하중을 받는 타이어의 응력해석에 관한 연구 (A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

금속-고무 스프링의 유한요소 해석 (Finite Element Analysis of Metal Bonded Rubber Spring)

  • 우창수;김완두
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.474-481
    • /
    • 1998
  • Metal bonded rubber spring is used in primary suspension component of the high speed train. The aim of this study is to establish a finite element analysis technique for the metal bonded rubber spring. Some theoretical analyses were performed on the hyperelastic behavior in rubber material and test are carried out to acquire the constants in strain energy function for it. Also, finite element analysis were executed to evaluate the design parameter and behavior of deformation and stress distribution using by the commercial finite element code.

  • PDF

결정소성학에 의한 미세 성형공정의 유한요소해석 (Finite Element Analysis of Micro Forming Process by Crystal Plasticity)

  • 김흥규;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2001
  • It is known that the mim forming processes show somewhat different phenomena compared with the conventional metal forming processes, namely, the size effect, enhanced friction effect and etc. Such typical phenomena, however, are not predicted by the conventional finite element analysis, which has been an efficient numerical tool to predict the metal forming processes. It is due to the fact that the constitutive relations used does not describe the microstructural characteristics of the materials. In the present investigation, the finite element formulation using the rate-dependent rigid plastic crystal plasticity model of the face-centered cubic materials is conducted to predict the micro mechanical behaviors during the mim forming processes. The finite element analysis, however, provides mesh-dependent solutions for the intragranular deformations. Therefore, the couple stress energy is additionally introduced into the variational principle and formulated within the framework of the rigid plastic finite element method to obtain mesh-independent solutions. Micro deformations of single crystal and bicrystal with various orientations are calculated to show the potential of the developed formulation.

  • PDF

세라믹/금속 접합재의 잔류응력 해석 (Analysis of Residual Stress of Ceramic/Metal Joint)

  • 박영철;허선철;김광영
    • 비파괴검사학회지
    • /
    • 제14권1호
    • /
    • pp.7-15
    • /
    • 1994
  • 동을 중간재로 하는 $Si_3N_4/SUS304$ 접합재의 접합계면 근방의 잔류응력 분포를 유한요소법과 X선 응력측정법을 이용하여 해석을 하였다. 그 결과, 접합재의 세라믹부 계면 근방의 잔류응력 분포를 정량적으로 밝혀낼 수 있었다. 세라믹부에 발생되는 접합 잔류응력은 접합계면 근방에서 대단히 크게 나타났으며, 특히 최대인장 잔류응력 ${\sigma}_x$는 단부에서 발생하였다. 한편, ${\sigma}_x$는 접합계면 근방에서 3차원분포를 하고 있기 때문에 2차원 유한요소 해석결과와는 대단히 다른 값을 나타내고 있으며, 특히 시험편 중앙부의 계면 근방에서는 X선 실측결과가 인장 잔류응력임에 반하여 2차원 유한요소 해석결과는 압축 잔류응력으로 계산되어짐을 알았다. 따라서, 이와같은 3차원 분포를 하고 있는 접합계면 근방의 잔류응력 ${\sigma}_x$보다 간편하고 정확하게 예측할 수 있는 유한요소 해석모델에 대하여 서로 검토하였다.

  • PDF

유한요소법에 의한 피로균열 진전 시뮬레이션 (Simulation of Fatigue Crack Propagation by Finite Element Analysis)

  • 구병춘;양승용;박준서
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2005
  • The effect of residual stress on fatigue crack growth was investigated in terms of finite element analysis. Simulations were performed on a CT specimen in plane strain. An interface-cohesive element that accounts for damage accumulation due to fatigue along the notch direction has been used. Numerical results show that fatigue crack growth rate slows down when compressive residual stress field exists in front of the crack tip.

  • PDF

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo;Talledo, Diego A.
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.351-360
    • /
    • 2017
  • This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구 (A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method)

  • 정석주
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF