The fluidic muscle cylinder consist of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. In this study, we carried out the finite element modelling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.
Piezoelectric coefficient and dielectric constant of PZT-5H vary with electric field. In this work, variations of these coefficients with electric field are included in finite element modelling of a cantilevered plate instrumented with piezoelectric patches. Finite element model is reduced using modal truncation and then converted into state-space. First three modal displacements and velocities are estimated using Kalman observer. Negative first modal velocity feedback is used to control the vibrations of the smart plate. Three cases are considered v.i.z case 1: in which variation of piezoelectric coefficient and dielectric constant with electric field is not considered in finite element model and not considered in Kalman observer, case 2: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model and not considered in Kalman observer and case 3: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model as well as in Kalman observer. Simulation results show that appreciable amount of change would appear if variation of piezoelectric coefficient and dielectric constant with r.m.s. value of electric field is considered.
As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.
Tunnelling in urban environments is very common nowadays as large cities are expanding and transportation demands require the use of the underground space for creating extra capacity. Inevitably, any such new construction may have significant effects on existing nearby infrastructure and therefore relevant assessment of structural integrity and soil-structure interaction is required. Foundation piles can be rather sensitive to nearby tunnel construction and therefore their response needs to be evaluated carefully. Although detailed three-dimensional continuum finite element analysis can provide a wealth of information about this behaviour of piles, such analyses are generally very computationally demanding and may require a number of material and other model parameters to be properly calibrated. Therefore, relevant simplified approaches are used to provide a practical way for such an assessment. This paper presents a simple method where the pile is modelled with beam finite elements, pile-soil interaction is modelled with soil springs and tunnelling-induced displacements are introduced as an input boundary condition at the end of the soil springs. The performance of this approach is assessed through some examples of applications.
The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.
There is an abundance of research on the strengthening of reinforced concrete (RC) structural elements such as beams, columns and slabs with fibre reinforced polymer (FRP) composites. Less research by comparison has been conducted on the strengthening of RC beam-column connections and the majority of such research has been predominantly experimental to date. Few existing experimental studies have reported extensive instrumentation of test specimens which in turn makes understanding the behavior of the connections and especially the contributions made by the FRP difficult to ascertain. In addition, there has been even more limited research on the analytical and numerical modelling of FRP-strengthened connections. In this paper, detailed descriptions of key strategies to model FRP-strengthened RC connections with finite elements are provided. An extensively instrumented and comprehensively documented set of experiments on FRP-strengthened connections is firstly presented and finite element models are then constructed using ANSYS. The study shows that the finite element approach is able to capture the overall behavior of the test specimens including the failure mode as well as the behavior of the FRP which will most importantly lead to a detailed understanding of the FRP and the future development of rational analytical models. The finite element models are, however, unable to model the stiffness of the connections with accuracy in the ultimate load range of response.
Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
Steel and Composite Structures
/
제7권6호
/
pp.487-502
/
2007
In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.
Use of composite steel construction with precast hollow core slabs is now popular in the UK, but the present knowledge in shear capacity of the headed shear studs for this type of composite construction is very limited. Currently, all the information is based on the results obtained from experimental push-off tests. A finite element model to simulate the behaviour of headed stud shear connection in composite beam with precast hollow core slabs is described. The model is based on finite element method and takes into account the linear and non-linear behaviour of all the materials. The model has been validated against the test results, for which the accuracy of the model used is demonstrated. Parametric studies showing the effect of the change in transverse gap size, transverse reinforcement diameter and in-situ concrete strength on the shear connection capacity are presented.
The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.
Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.