• 제목/요약/키워드: Finite element modelling

검색결과 523건 처리시간 0.019초

볼트결합부가 있는 구조물의 유한요소 모델링 및 실험적 검증 (Finite Element Modeling and Experimental Verification of the Structures with Bolted Joints)

  • 김진곤;박성수;최석환
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1854-1861
    • /
    • 1996
  • A reliable and practical finite element modeling technique to estimate the behavior of complex structures with bolted joints is important for engineeres in the industry. Accordingly, we have examined several simplified modeling techinques which do not require the use of special elements such as a gap eloement. The dynamic and static erxperiments have confirmed that the technique to model the bolted joints with eight-noded three dimensional elemnts which fill the bolt space gdives most satisfactory results.

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • 제6권4호
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

회전 외팔보에서의 유한요소 연구 (A Finite Element Analysis for a Rotating Cantilever Beam)

  • 정진태;유홍희;김강성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.529-534
    • /
    • 2000
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modelling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, are derived two weak forms: one is for the chordwise motion and the other is for the flapwise motion. The weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviours of the natural frequencies are investigated for the variation of the rotating speed.

  • PDF

홀확장 잔류응력 예측을 위한 유한요소해석 (The Finite Element Analysis for Prediction of Residual Stresses Induced by Cold Expansion)

  • 김철;양원호;고명훈;허성필;현철승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.470-474
    • /
    • 2000
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are, expanding rate, inserting direction of mandrel, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, Two-dimensional axisymmetric finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress and plastic deformation. Maximum compressive residual stress could be increase about 7 percent using the 2-step cold expansion method.

  • PDF

신발 설계 및 평가를 위한 컴퓨터 모델 (REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

Simplified finite element modelling of non uniform tall building structures comprising wall and frame assemblies including P-Δ effects

  • Belhadj, Abdesselem Hichem;Meftah, Sid Ahmed
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.253-273
    • /
    • 2015
  • The current investigation has been conducted to examine the effect of gravity loads on the seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The proposed model includes the P-${\Delta}$ effects induced by the building weight. Based on the variational approach, a 3D finite element with two nodes and six DOF per node including P-${\Delta}$ effects is formulated. Dynamic and static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame systems. The influences of P-${\Delta}$ effects and height of the building on tip displacements under Hachinohe earthquake record are investigated through many structural examples.

수치 해석을 이용한 난류 경계층 내 벽면 변동 압력을 받는 보의 진동 해석 (Vibration of Beams Induced by Wall Pressure Fluctuation in Turbulent Boundary Layer Using Numerical Approaches)

  • 유정수;김은비
    • 한국소음진동공학회논문집
    • /
    • 제23권8호
    • /
    • pp.698-706
    • /
    • 2013
  • Structural vibration induced by excitation forces under turbulent boundary layer is investigated in terms of the numerical analysis in this paper. Since the responses of structures excited by the wall pressure fluctuation(WPF) are described by the power spectral density functions, they are calculated and reviewed theoretically for finite and infinite length beams. For the use of numerical approaches, the WPF needs to be discretized but conventional finite element method is not much effective for that purpose because the WPF lose the spatial correlation characteristics. As an alternative numerical technique for WPF modelling, a wavenumber domain finite element approach, called waveguide finite element method, is examined here for infinite length beams. From the comparison between the numerical and theoretical results, it was confirmed that the WFE method can effectively and easily cope with the excitation from WPF and hence the suitable approach.

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.