• 제목/요약/키워드: Finite element modeling

검색결과 2,192건 처리시간 0.024초

이종금속 오버레이 용접 배관의 파단전누설균열 해석을 위한 단순 유한요소 모델링 방법 (A Simple Finite Element Modeling Method for Leak-Before-Break Crack Analysis of Pipe with Overlay Dissimilar Metal Weldments)

  • 김만원;박영섭
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.70-76
    • /
    • 2013
  • Several finite element models for the leak-before-break (LBB) assessment of overlay dissimilar metal weldment were constructed and analyzed to develop a simple finite element modeling method. The J-integral, crack opening displacement (COD) and J-integral distribution along the crack front in thickness direction due to the applied moment were obtained from the analysis results of the constructed finite element models, and studied compared to the previous literatures. It is concluded that the modeling with base material only is simple and produces a slightly conservative results compared to the complex modeling composed with weld metal and base metal in the calculation of J-integrals and COD values which are used for the calculation of fracture toughness and postulated leakage crack length respectively.

Finite element modeling of multiplyconnected three-dimensional areas

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Razmukhamedov, Daniyarbek D.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.277-289
    • /
    • 2020
  • This article describes the technology for constructing of a multiply-connected three-dimensional area's finite element representation. Representation of finite-element configuration of an area is described by a discrete set that consist of the number of nodes and elements of the finite-element grid, that are orderly set of nodes' coordinates and numbers of finite elements. Corresponding theorems are given, to prove the correctness of the solution method. The adequacy of multiply-connected area topology's finite element model is shown. The merging of subareas is based on the criterion of boundary nodes' coincidence by establishing a simple hierarchy of volumes, surfaces, lines and points. Renumbering nodes is carried out by the frontal method, where nodes located on the outer edges of the structure are used as the initial front.

환상압연 공정의 실용적 모델링 방법에 관한 연구 (A Study on the Practical Finite Element Modeling Method for Ring Rolling)

  • 이두규;김응주;이용신
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.161-166
    • /
    • 2015
  • The finite element method has been widely used in the analysis of ring rolling. For ring rolling it requires a high computational expense due to the non-steady state material flow characteristics of the process. The high computational expense causes the finite element analysis to be impractical for industrial applications. In the current study, we aim to develop a practical implicit finite element modeling method for ring rolling. This method uses a step-wise steady state assumption and is called the “Stepped method”. The stepped method divides the whole process time of unsteady-state flow model into a finite number of steady-state models. It then solves the process at several specific time steps until convergence is reached. In order to confirm the performance and validity of the newly proposed stepped method, the result from the stepped method were compared to the results from a Lagrangian finite element method and to results from experiments reported in the literature.

Finite Element Modeling of Piezoelectric Sensors and Actuators based on Timoshenko Beam Theory

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, a new smart beam finite element is proposed for the finite element modeling of the beam-type smart structure with bonded plate-type piezoelectric sensors and actuators. Constitutive equations far the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The presented 2-node beam finite element is isoparametric element based on Timoshenko beam theory. The validity of the proposed beam element is shown through comparing the analysis results of the verification examples with those of other previous researches. Therefore, by analyzing smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by piezoelectric actuators with applied voltages and the monitoring of the structure behavior by piezoelectric sensors with sensed voltages.

  • PDF

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

압전감지기와 압전작동기를 이용한 보구조물의 자유진동제어에 대한 유한요소 모형화 (Finite Element Modeling for Free Vibration Control of Beam Structures using Piezoelectric Sensors and Actuators)

  • 송명관;한인선;김선훈;최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.269-278
    • /
    • 2003
  • In this study, the method of the finite element modeling for free vibration control of beam-type smart structures with bonded plate-type piezoelectric sensors and actuators is proposed. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived, The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. Therefore, by analyzing beam-type smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by applying voltages to piezoelectric actuators and monitoring of the structural behavior by sensing voltages of piezoelectric sensors. By using the smart beam finite element and constant-gain feed back control scheme, the formulation of the free vibration control for the beam structures with bonded plate-type piezoelectric sensors and actuators is proposed.

  • PDF

불연속 요소를 사용한 콘크리트 파괴진행의 유한요소 모델링 (Modeling of Progressive Failure in Concrete using Discontinuous Finite Elements)

  • 심별;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.247-252
    • /
    • 1996
  • In the concrete structures, cracks occur in various causes and the cracks seriously affect the functions of structures. The analysis techniques of progressive crack in the concrete have been improved with the advance of numerical techniques. The discrete crack model used in finite element program for the analysis of progressive failure is very effective, but it can not be easily implemented into numerical procedures because of difficult handing of nodal points in finite element meshes for crack growth. This paper introduces one of the techniques which skips the difficulty. In this paper, the modeling of progressive failure using finite element formulation is explained for the analysis of concrete fracture. The discontinuous element using the discontinuous shape function and the dual mapping technique in the numerical integration are implemented into finite element code for this purpose. It is shown that developed finite element program can predict the quasi-brittle behavior of concrete including ultimate load. The comparisons of the analysis results with other data are also shown.

  • PDF

레이저 클래딩 공정의 3차원 유한요소 모델링 (Three-Dimensional Finite Element Modeling of Laser Cladding Process)

  • 조계평;시호문;이흥식;조종두
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.279-288
    • /
    • 2004
  • This paper describes a three-dimensional transient finite element model for a laser cladding process. In the model, an adaptive finite element technique is used for dilution control. Using the proposed finite element model, the effects of process parameters such as scanning speed, laser's power, and preheating on the dilution of clad layer, the shape of melting pool, and the temperature distribution are calculated. It is also shown that the optimal process parameters for the required dilution can be determined from the proposed finite element model. An experiment is performed to validate the proposed model. The numerical results are compared with experimental ones.

Nonlinear finite element analysis of torsional R/C hybrid deep T-beam with opening

  • Lisantono, Ade
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.399-410
    • /
    • 2013
  • A nonlinear finite element analysis of R/C hybrid deep T-beam with web opening subjected to pure torsion is presented. Hexahedral 8-nodes and space truss element were used for modeling concrete and reinforcement. The reinforcement was assumed perfectly bonded to the corresponding nodes of the concrete element. The constitutive relations for concrete and reinforcement are based on the modified field theory and elastic perfectly plastic. The smear crack approach was adopted for modeling the crack. The torque-twist angle relationship curve based on the finite element analysis was compared to the experimental results. The comparison shows that the curve of torque-twist angle predicted by the nonlinear finite element analysis is linear before cracking and close to the experimental result. After cracking, the curve becomes nonlinear and stiffer compared to the experimental result.

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.