• Title/Summary/Keyword: Finite element method (FE.M)

Search Result 93, Processing Time 0.028 seconds

A simplified method to predict sway of rigid multi-storey steel frames

  • Ashraf, M.;Nethercot, D.A.;Ahmed, B.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.317-331
    • /
    • 2004
  • The lateral sway of a multi-storey steel frame should be limited so as to ensure the comfort of the occupants and for the protection of mechanical and architectural systems. This paper investigates the applicability of Schueller's equation for predicting sway of rigid steel frames, and proposes a number of modifications to the equation so that it can produce results that are almost identical to those given by accurate Finite Element (FE) analysis. The behaviour of irregular steel frames has also been studied and proposals are made so that Schueller's Equation can also be used to predict sway of such frames.

Design of Magnet Shape for Axial-Flux Type Permanent-Magnet Synchronous Generator with Dual Air-Gap (횡자속형 2중 공극 영구자석 동기발전기의 마그네트 형상설계)

  • Choi K.H.;Kim K.S.;Jin M.C.;Hwang D.H.;Bae S.W.;Kim D.H.;Ro C.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.828-831
    • /
    • 2003
  • This paper presents a novel design technique and characteristic analysis of Magnet for dual air-gap axial-flux type permanent-magnet synchronous generator. The process of magnet design is applied to the motor design and steady state analysis considering output voltage waveforms and magnetic flux waveforms. Design and construction of an axial-flux permanent-magnet generator with power output at 60 [Hz], 300[r/min] is introduced. Finite-element (FE) method is applied to analyze magnet shape characteristics. The results of FE analysis show generator is feasible for use with dual air-gap axial-flux permanent- magnet synchronous generator.

  • PDF

3-D Coupled Analysis of Deformation of the Strip and Rolls in Flat Rolling by FEM- Part II: Application (유한요소법을 활용한 평판압연에서의 롤 판 연계 해석 - Part II: 적용)

  • Park, H.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.234-239
    • /
    • 2017
  • A general approach is proposed for 3-D coupled FE analysis of the deformation of the strip and rolls in flat rolling. FE formulation, schemes for the treatment of contact occurring in a cluster of deforming objects, and the solution strategy are described in detail. The validity of the approach is examined through comparison with observed measurements. The approach is applied to the analysis of deformation in a four-high and six-high mill.

Process Metamorphosis and On-Line FEM for Mathematical Modeling of Metal Rolling-Part II: Application

  • Zamanian, A.;Nam, S.Y.;Shin, T.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • In this paper, we examine the application of a new concept - on-line FE model in various metal rolling processes. This technology allows for completion of process simulation within a tiny fraction of a second without losing the high level of prediction accuracy inherent to FEM. The procedure is systematically demonstrated through the design of actual on-line models for the prediction of the width spread in horizontal rolling of the slab using a dog bone profile and horizontal rolling of the strip with a strip profile. The validity and the prediction accuracy of the on-line FE models were analyzed and discussed.

Extrusion Process Analysis for Al Condenser Tube with Multi Hole (다공 Al 컨덴서 튜브의 압출공정 해석)

  • Bae J. H;Lee J. M;Kim B. M
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.723-730
    • /
    • 2004
  • This paper describes the analysis of extrusion process and integrity for a condenser tube which is a component of the heat exchanger in automobile and all conditioning apparatus. Recently, according to the development of analysis method using the computer, the numerical simulation have been applied to the 3-dimensional hot extrusion process with complex section area of the non-steady statement and then results of the analysis have been applied to optimal die design and process design. In this paper, firstly, the die design was performed for a condenser tube with a multi-hole section and the rigid-plasticity FE analysis performed of extrusion process. Secondly, we estimated metal flow of billet, extrusion load, welding pressure in chamber etc. and evaluated the pressure and elastic strain of the die land and mandrel tooth profile through a stress analysis of the die. Finally, the extrusion test was performed to estimate the validity of FE analysis. This paper confirmed that the designed extrusion die of the research is satisfactorily designed fur integrity of condenser tube.

Nonlinear FE modelling and parametric study on flexural performance of ECC beams

  • Kh, Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • Engineered Cementitious Composite (ECC) is a special class of the new generation of high performance fiber reinforced cementitious composites (HPFRCC) featuring high ductility with relatively low fiber content. In this research, the mechanical performance of ECC beams will be investigated with respect to the effect of slag and aggregate size and amount, by employing nonlinear finite element method. The validity of the models was verified with the experimental results of the ECC beams under monotonic loading. Based on the numerical analysis method, nonlinear parametric study was then conducted to evaluate the influence of the ECC aggregate content (AC), ECC compressive strength ($f_{ECC}$), maximum aggregate size ($D_{max}$) and slag amount (${\phi}$) parameters on the flexural stress, deflection, load and strain of ECC beams. The simulation results indicated that when increase the slag and aggregate size and content no definite trend in flexural strength is observed and the ductility of ECC is negatively influenced by the increase of slag and aggregate size and content. Also, the ECC beams revealed enhancement in terms of flexural stress, strain, and midspan deflection when compared with the reference beam (microsilica MSC), where, the average improvement percentage of the specimens were 61.55%, 725%, and 879%, respectively. These results are quite similar to that of the experimental results, which provides that the finite element model is in accordance with the desirable flexural behaviour of the ECC beams. Furthermore, the proposed models can be used to predict the flexural behaviour of ECC beams with great accuracy.

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.373-393
    • /
    • 2014
  • A finite element model for predicting the entire nonlinear behavior of reinforced high-strength concrete continuous beams is described. The model is based on the moment-curvature relations pre-generated through section analysis, and is formulated utilizing the Timoshenko beam theory. The validity of the model is verified with experimental results of a series of continuous high-strength concrete beam specimens. Some important aspects of behavior of the beams having different tensile reinforcement ratios are evaluated. In addition, a parametric study is carried out on continuous high-strength concrete beams with practical dimensions to examine the effect of tensile reinforcement on the degree of moment redistribution. The analysis shows that the tensile reinforcement in continuous high-strength concrete beams affects significantly the member behavior, namely, the flexural cracking stiffness, flexural ductility, neutral axis depth and redistribution of moments. It is also found that the relation between the tensile reinforcement ratios at critical negative and positive moment regions has great influence on the moment redistribution, while the importance of this factor is neglected in various codes.

Finite element modeling of human cervical spine (인체 경추부의 유한요소 모델링)

  • Choi, H.Y.;Eom, H.W.;Lee, T.H.;Kang, S.B.;Hwang, M.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.280-283
    • /
    • 1997
  • Human cervical spine has to protect the neural components and vascular structures. Also, it must have the flexibility afforded by an extensive range of motion to integrate the head with the body and environment. Because of these two-sided features, human cervical spine has very complicated shapes and their injury mechanisms are not fully understood yet. We have developed analytical model of human CS by using the finite element method. The model has been verified with in vivo and in vitro experimental results. From the qualitative analysis of simulation results, we were able to explain some of the fundamental mechanisms of neck pain. Further more, this FE model of human CS can be used as an analytical tool or biomechanical design of the clinical device and safety restraints.

  • PDF

Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates (연료전지 분리판의 마이크로 채널 제작을 위한 가변성형공정의 실험적 및 수치적 연구)

  • Kim, H.S.;Shim, J.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.499-505
    • /
    • 2012
  • The fuel cell is a very promising power generation system combining the benefits of extremely low emissions, high efficiency, ease of maintenance and durability. In order to promote the commercialization of fuel cells, a flexible forming process, in which a hyper-elastic rubber is adopted as a medium to transmit forming pressure, is suggested as an efficient and cost effective manufacturing method for fuel cell bipolar plates. In this study, the ability of this flexible forming process to produce the micro channel arrays on metallic bipolar plates was first demonstrated experimentally. Then, a finite element (FE) model was built and validated through comparisons between simulated and experimental results. The effects of key process parameters on the forming performance such as applied load and punch velocity were investigated. As a result, appropriate process parameter values allowing high dimensional accuracy without failure were suggested.

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.