• 제목/요약/키워드: Finite element method (FE.M)

검색결과 93건 처리시간 0.027초

Nonlinear finite element analysis of high strength concrete slabs

  • Smadi, M.M.;Belakhdar, K.A.
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2007
  • A rational three-dimensional nonlinear finite element model is described and implemented for evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. The nonlinear equations have been solved using the incremental iterative technique based on the modified Newton-Raphson method. The FE formulation and material modeling is implemented into a finite element code in order to carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical formulations and the program used was verified through comparison with available experimental data, and the agreement has proven to be very good. A parametric study has been also carried out to investigate the influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors, such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection characteristics, concrete and steel stresses and strains were investigated.

Experimental investigation for failure analysis of steel beams with web openings

  • Morkhade, Samadhan G.;Gupta, Laxmikant M.
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.647-656
    • /
    • 2017
  • This paper presents an experimental study on the behaviour of steel beams with different types of web openings. Steel beams with web openings became progressively more accepted as a well-organized structural form in steel construction since their existence. Their complicated design and profiling method provides better flexibility in beam proportioning for strength, depth, size and location of holes. The objective of this study is to carry out the experiments on steel beams with different types of web openings and performed non-linear finite element (FE) analysis of the beams that were considered in the experimental study in order to determine their ultimate load capacity and failure modes for comparison. Ten full scale models of steel beam with web openings have been tested in the experimental investigation. The finite element method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify test results and to investigate the nonlinear behaviour of failure modes such as local buckling, lateral torsional buckling, web-post buckling, shear buckling and Vierendeel bending of beams.

스테인러스 슬라이드 레일의 정밀 롤 포밍을 위한 유한요소해석 (Finite Element Analysis for Precision Roll Forming Process of Stainless Slide Rail)

  • 이택성;김건완
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.96-103
    • /
    • 2009
  • The roll forming process is commonly used for the conventional 'Fe' metal products such as a furniture drawer guide or an up-down slide guide. Recently its applications are variously expanded to the sanitary facilities or electronic devices. It is essentially required the cleanness for the high technology application and any corrosion or rust are not allowed. Therefore, in those applications the stainless steel materials are strongly demanded as the substitution of 'Fe' steel. However the mechanical properties of stainless steel are not suitable for forming process compared with those of 'Fe' steel. Up to now, the conventional F.E.M.(Finite Element Method) has been used to analyze and design the roll forming process. The purpose of this research is to obtain the proper production process and the shape of rolls to manufacture the high precision slide rails made of stainless steel material. The commercial program, SHARPE-RF, is used to analyze the entire roll forming process. The results show that the rolling process and the roll design by F.E.M. are useful from the good agreement between the shapes of products estimated by F.E.M. and those of the actual products.

Structural behaviour of stainless steel stub column under axial compression: a FE study

  • Khate, Kevinguto;Patton, M. Longshithung;Marthong, Comingstarful
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1723-1740
    • /
    • 2018
  • This paper presents a Finite Element (FE) study on Lean Duplex Stainless Steel stub column with built-up sections subjected to pure axial compression with column web spacing varied at different position across the column flanges. The thicknesses of the steel sections were from 2 to 7 mm to encompass a range of section slenderness. The aim is to study and compare the strength and deformation capacities as well as the failure modes of the built-up stub columns. The FE results have been compared with the un-factored design strengths predicted through EN1993-1-4 (2006) + A1 (2015) and ASCE8-02 standards, Continuous Strength Method (CSM) and Direct Strength Method (DSM). The results showed that the design rules generally under predict the bearing capacities of the specimens. It's been observed that the CSM method offers improved mean resistance and reduced scatter for both classes of cross-sections (i.e. slender and stocky sections) compared to the EN1993-1-4 (2006) + A1 (2015) and ASCE 8-02 design rules which are known to be conservative for stocky cross-sections.

The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems

  • Chen, Li;Liew, K.M.;Cheng, Yumin
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.277-298
    • /
    • 2010
  • The complex variable reproducing kernel particle method (CVRKPM) and the FEM are coupled in this paper to analyze the two-dimensional potential problems. The coupled method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, resulting in improved computational efficiency. A hybrid approximation function is applied to combine the CVRKPM with the FEM. Formulations of the coupled method are presented in detail. Three numerical examples of the two-dimensional potential problems are presented to demonstrate the effectiveness of the new method.

An intelligent system for the design of RC slabs

  • Hossain, K.M.A.;Famiyesin, O.O.R.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.297-312
    • /
    • 2001
  • The accurate finite element (FE) simulation of reinforced concrete (RC) slabs, having different boundary conditions and subjected to uniformly distributed loading, has led to the use of the developed FE models for generating results of ultimate loads from predictions of 'computer-model' RC slabs having different material and geometric properties. Equations derived from these results constitute the primary database of an intelligent computer-aided-design (CAD) system developed for accurate and fast information retrieval on arbitrary slabs. The system is capable of generating a secondary database through systems of interpolation and can be used for design assistance purposes.

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

A study on detailing gusset plate and bracing members in concentrically braced frame structures

  • Hassan, M.S.;Salawdeh, S.;Hunt, A.;Broderick, B.M.;Goggins, J.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.233-267
    • /
    • 2018
  • Conventional seismic design of concentrically braced frame (CBF) structures suggests that the gusset plate connecting a steel brace to beams and/or columns should be designed as non-dissipative in earthquakes, while the steel brace members should be designed as dissipative elements. These design intentions lead to thicker and larger gusset plates in design on one hand and a potentially under-rated contribution of gusset plates in design, on the other hand. In contrast, research has shown that compact and thinner gusset plates designed in accordance with the elliptical clearance method rather than the conventional standard linear clearance method can enhance system ductility and energy dissipation capacity in concentrically braced steel frames. In order to assess the two design methods, six cyclic push-over tests on full scale models of concentric braced steel frame structures were conducted. Furthermore, a 3D finite element (FE) shell model, incorporating state-of-the-art tools and techniques in numerical simulation, was developed that successfully replicates the response of gusset plate and bracing members under fully reversed cyclic axial loading. Direct measurements from strain gauges applied to the physical models were used primarily to validate FE models, while comparisons of hysteresis load-displacement loops from physical and numerical models were used to highlight the overall performance of the FE models. The study shows the two design methods attain structural response as per the design intentions; however, the elliptical clearance method has a superiority over the standard linear method as a fact of improving detailing of the gusset plates, enhancing resisting capacity and improving deformability of a CBF structure. Considerations were proposed for improvement of guidelines for detailing gusset plates and bracing members in CBF structures.

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.