• Title/Summary/Keyword: Finite element investigations

Search Result 240, Processing Time 0.028 seconds

Combined bending and web crippling of aluminum SHS members

  • Zhou, Feng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.173-185
    • /
    • 2019
  • This paper presents experimental and numerical investigations of aluminum tubular members subjected to combined bending and web crippling. A series of tests was performed on square hollow sections (SHS) fabricated by extrusion using 6061-T6 heat-treated aluminum alloy. Different specimen lengths were tested to obtain the interaction relationship between moment and concentrated load. The non-linear finite element models were developed and verified against the experimental results obtained in this study and test data from existing literature for aluminum tubular sections subjected to pure bending, pure web crippling, and combined bending and web crippling. Geometric and material non-linearities were included in the finite element models. The finite element models closely predicted the strengths and failure modes of the tested specimens. Hence, the models were used for an extensive parametric study of cross-section geometries, and the web slenderness values ranged from 6.0 to 86.2. The combined bending and web crippling test results and strengths predicted from the finite element analysis were compared with the design strengths obtained using the current American Specification, Australian/New Zealand Standard and European Code for aluminum structures. The findings suggest that the current specifications are either quite conservative or unconservative for aluminum square hollow sections subjected to combined bending and web crippling. Hence, a bending and web crippling interaction equation for aluminum square hollow section specimens is proposed in this paper.

An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration (2차원 동적 진동문제의 공간-시간 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.143-149
    • /
    • 2006
  • This paper deals with the space-time finite element analysis of two-dimensional vibration problem with a single variable. The method of space-time finite elements enables the simpler solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period. The weighted residual process is used to formulate a finite element method for a space-time domain. A stability problem is described and some investigations for chosen type of rectangular space-time finite elements are carried out. Instability is caused by a too large time step of successive time steps in the traditional time-dependent problems. It has been shown that the numerical stability of time-stepping on the larger time steps is quite good. The unstructured space-time finite element not only overcomes the shortcomings of the stability in the traditional numerical methods, but it is also endowed with the features of an effective computational technique. Some numerical examples have been presented to illustrate the efficiency of the described method.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Nonlinear Finite Element Analysis for the Swaging of a High-Pressure Hose (고압호스 스웨이징에 대한 비선형 유한요소해석)

  • Kim, B.T.;Kim, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.44-50
    • /
    • 2003
  • The power steering hose is a kind of high-pressure hose with reinforced braids in rubber material. It is usually manufactured through the swaging process. In this paper, the deformation characteristics of a power steering hose during the swaging process were analyzed using the nonlinear finite element method. The material properties were obtained on experiments, and the contact conditions were used in consideration of real manufacturing process. Investigations were focused on the stress and strain values of the hose and meta] components at the maximum jaw stroke and at the completion of the process. Especially, the results of inner rubber component were interpreted in detail, because of its important role in the hose efficiency.

  • PDF

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

Finite Element Analysis for the Deformation Characteristics of a P/S Hose in the Swaging Process (Swaging 시 P/S 호스의 변형 특성에 대한 유한요소해석)

  • Kim, Byung-Tak;Kim, Hyung-Je;Song, Han-Jong;Kang, Chang-Gee
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.692-697
    • /
    • 2001
  • It is necessary to analyze the mechanical behaviors of the power steering hose, which must play a proper role under severe operating conditions, in order to prepare a preventive measure fur contrary effects expected in unfavorable circumstances. In this paper, the stress and deformation characteristics of the hose components such as rubber, sleeve, nipple and reinforced braids during the swaging process, are analyzed using the finite element method. Contact conditions identical to the manufacturing process are taken into account, and the material properties based on experimental data are used in the analysis. Investigations into the mutual relations between the manufacturing conditions and the hose performances are done with respect to the jaw stroke on the basis of the stress and strain values of the hose components after swaging process.

  • PDF

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

Strong formulation finite element method for arbitrarily shaped laminated plates - Part I. Theoretical analysis

  • Fantuzzi, Nicholas;Tornabene, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.125-143
    • /
    • 2014
  • This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.