• Title/Summary/Keyword: Finite element elastic-plastic analysis

Search Result 467, Processing Time 0.022 seconds

Study on Precision Cold Forging of helical Gear (헬리컬 기어의 정밀 냉간 단조에 대한 연구)

  • 박용복;양동열
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.384-392
    • /
    • 1999
  • In metal forming, there are problems with recurrent geometric characteristics without explicitly prescibed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. the elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products, the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed, and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Finite Element Analysis for Fatigue Crack Closure Behavior Using Reversed Plastic Zone Size (되풀이 소성영역 크기를 이용한 피로 균열 닫힘 거동의 유한요소해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1703-1711
    • /
    • 2003
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behaviour of fatigue cracks in residual stress fields and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using contact elements can predict fatigue crack closure behaviour. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. Specially, the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point can precisely predict the opening level. By using the concept of the mesh of element sizes depending upon the reversed plastic zone size included the effect of crack opening point, the opening level of fatigue crack can be determined very well.

Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading (인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법)

  • An Joong-Hyok;Kim Yun-Jae;Yoon Kee-Bong;Ma Young-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.

Ratcheting boundary of pressurized pipe under reversed bending

  • Chen, Xiaohui;Chen, Xu;Li, Zifeng
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2019
  • Ratcheting boundary is firstly determined by experiment, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which is compared with ASME/KTA and RCC-MR. Moreover, based on elastic modulus adjustment procedure, a novel method is proposed to predict the ratcheting boundary for a pressurized pipe subjected to constant internal pressure and cyclic bending loading. Comparison of ratcheting boundary of elbow pipe determined by the proposed method, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which indicates that the predicted results of the proposed method are in well agreement with those of linear matching method.

Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch

  • Mechab, Belaid;Chama, Mourad;Kaddouri, Khacem;Slimani, Djelloul
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1173-1182
    • /
    • 2016
  • The objective of this work was to evaluate the ductile cracked structures with bonded composite patch used in probabilistic elastic plastic fracture mechanics subjected to tensile load. The finite element method is used to analyze the stress intensity factors for elastic case, the effect of cracks and the thickness of the patch ($e_r$) are presented for calculating the stress intensity factors. For elastic-plastic the Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the stress variations are important factors influencing on the distribution function of (J/Je).

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

A Comparative Study on Elastic-Plastic -Dynamci Analysis of Sheet Metal Forming (탄소성 동적해석시 해에 미치는 여러 인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.245-248
    • /
    • 1999
  • Explicit dynamic finite element analysis has been used widely in the field of sheet metal forming. However in using the analysis technique there are some parameters which are not clearly defined so that engineers may obtain inaccurate solutions In the present study parameters such as time step damping ratio penalty constant and punch speed were investigated on their influence to the solution behavior. Considered forming processes are plane stain bending by a punch and axisymmetric deep drawing.

  • PDF

Finite Element Analysis of Mechanical Behavior of Bolt Tightened in Plastic Region (소성역 체결 볼트의 기계적 거동 유한요소해석)

  • Cho, Sung-San;Shin, Chun-Se
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Plastic region tightening is widely used in critical bolted joints in internal combustion engines in order to reduce the engine weight by maximizing the use of load-carrying capacity of bolt. Mechanical behavior of bolt tightened in plastic region under external axial tensile load is investigated for various friction conditions using three dimensional finite element analysis. The behavior of bolt tightened in elastic region as well as that in tensile test are investigated for comparison. Tightening process is simulated by rotating the bolt in order to examine the friction effect realistically. It is revealed that the bolt tightened in plastic region can carry more external load until the joint is opened, and yields at lower bolt load than the bolt tightened in elastic region. The friction coefficient has effect on the yield load, but not on the load-carrying capacity. Moreover, the scatter in the bolt preload due to friction begins with plastic deformation of bolt in the angle tightening control, whereas it begins with the onset of tightening in the torque tightening control. The observations are interpreted with the residual torsional stress in the bolt generated during the tightening.

Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements (대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석)

  • 박기철;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.