• Title/Summary/Keyword: Finite element damage analysis

Search Result 872, Processing Time 0.024 seconds

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

Health Monitoring of Weldment By Post-processing Approach Using Finite Element Analysis (유한요소해석 후처리 기법을 이용한 용접부의 건전성 평가)

  • 이제명;백점기;강성원;김명현
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • In this paper, a numerical methodology for health monitoring of weldment was proposed using finite element method coupled with continuum damage mechanics. The welding-induced residual stress distribution of T-joint weldment was calculated using a commercial finite element package SYSWELD+. The distribution of latent damage was evaluated from the stress and strain components taken as the output of a finite element calculation. Numerical examples were given to demonstrate the usefulness of this so-called "post-processing approach" in the case of welding-induced damage assessment.

Finite Element Analysis for Extrusion/Drawing of Milli-Size Bar (밀리봉의 압출/인발의 유한요소해석)

  • Kim Y. I.;Lee Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.70-73
    • /
    • 2000
  • A finite element analysis model is suggested for analysis of forming process of milli structure whose size is from a few hundreds ${\mu}m$ to a few mm. In this paper, finite element formulation which assemble crystal plasticity theory considering texture development with damage mechanics is developed, since orientation development and growth of micro voids became the primary factors for deformation aspects in large deformation of milli structure. Applying to, extremely, extrusion process of single crystal and extrusion/drawing process of polycrystal milli-size bar, extrusion force, preferred orientation, and damage evolution are examined to understand the characteristics of deformation of milii-size bar.

  • PDF

Finite Element Damage Analysis Method for J-Resistance Curve Prediction of Cold-Worked Stainless Steels (조사취화를 모사한 스테인레스강의 파괴저항선도를 예측하기위한 유한요소 손상해석기법)

  • Seo, Jun Min;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Materials in nuclear power plants can be embrittled by neutron irradiation. According to existing studies, the effect of the material property by irradiation embrittlement can be approximately simulated by cold working (pre-strain). In this study, finite element damage analysis method using the stress-modified fracture strain model is proposed to predict J-Resistance curves of irradiated SUS316 stainless steel. Experimental data of pre-strained SUS316 stainless steel material are obtained from literature and the damage model is determined by simulating the tensile and fracture toughness tests. In order to consider damage caused by the pre-strain, a pre-strain constant is newly introduced. Experimental J-Resistance curves for various degrees of pre-strain are well predicted.

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

  • Lee, Sanghoon;Cho, Sang-Soon;Jeon, Je-Eon;Kim, Ki-Young;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-80
    • /
    • 2014
  • A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.

Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys (AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석)

  • Yoon, D.J.;Kim, E.Z.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.