• Title/Summary/Keyword: Finite element (FE) analysis

Search Result 1,450, Processing Time 0.025 seconds

Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory

  • Singh, S.K.;Chakrabarti, A.
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • A $C^0$ FE model developed based on an efficient higher order zigzag theory is used for hygrothermal analysis of laminated composite plates. The $C^0$ FE model satisfies the inter-laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of $C^1$ continuity associated with the above plate theory. In the present theory the above mentioned $C^0$ continuity of the present element is compensated in the stiffness matrix formulation by using penalty parameter approach. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature/moisture fields (initial strains) must be consistent with total strain field. Special steps are introduced by field consistent approach (e.g., sampling at gauss points) to compensate this problem. A nine noded $C^0$ continuous isoparametric element is used in the proposed FE model. Comparison of present numerical results with other existing solutions shows that the proposed FE model is efficient, accurate and free of locking.

Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine (대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석)

  • 조남효;이상업;이상규;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

Modal Tuning of HDD suspension system (HDD 서스펜션의 모달 튜닝)

  • Kim, Dong-Woohn;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1583-1588
    • /
    • 2000
  • The dynamic characteristics of a HDD suspension system are investigated by finite element analysis and experimental modal analysis. A finite element model of the suspension Type850 was developed for unloaded case. The calculated vibration modes were compared with measurements and agree well in shape and frequency except some local modes. Local thickness and Young's modulus of the finite element model are updated by modal tuning method to develop the precise FE model. A sensitivity matrix of the natural frequencies for some design variables was calculated using finite difference method. Most natural frequencies calculated by the tuned FE model coincide with the measurements and the errors between them are less than 2%.

  • PDF

Finite Element Analysis of Laser-Generated Ultrasound for Characterizing Surface-Breaking Cracks

  • Jeong Hyun Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1116-1122
    • /
    • 2005
  • A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain finite element (FE) model. The shear dipole- FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks.

Evaluation of Optical Performance for an Aspheric Lens Connecting with FE Analysis of Injection Molding (사출성형 유한요소해석과 연계한 비구면렌즈의 광학적 특성평가)

  • Park, K.;Um, H.J.;Kim, J.P.;Joo, W.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.25-30
    • /
    • 2007
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting a finite element (FE) analysis of injection molding with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a new.ay tracing scheme is proposed in conjunction with a FE analysis of the injection molding. A numerical scheme is developed to calculate ray paths on every element layer with more realistic information of the refractive indices which can be obtained through the FE analysis. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

Virbration Characteristics of a passenger Car Steering Column

  • Lee, Young-Shin;Song, Sun-Young;Park, Myoung-Hwan;Ryu, Chung-Hyun;Kim, Young-Wann
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.130-141
    • /
    • 2000
  • The virbration characteristics of a passenger car steering column are studied by using a modal test and a finite element (FE) analysis. To verify the FE model and the results, an experiment using the impact exciting method is performed. Two types of the steering column in this study are considered as follows; (ⅰ) the non-tilt type steering column and (ⅱ) the upper-tilt type steering column. The experimental results are compared with those o the FE analysis, and it ti shown that the results agree with each other. The effects of various design parameters such as the bracket thickness, the column diameter on the natural frequencies are also investigated by FE analysis.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Issues in Static FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads (이축인장을 받는 철근콘크리트 패널의 정적 유한요소해석에서의 논점)

  • 이상진;이홍표;이영정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.569-576
    • /
    • 2003
  • Fundamental issues in static finite element analysis of reinforced concrete panel subjected to biaxial tensile loads are discussed. This paper is trying to bring our attention to the appropriate use of concrete material models such as cracking criteria, tension stiffening model and the steel models which are basically used in the nonlinear finite element analysis of reinforced concrete panels. We mainly investigate the sensitivity of available material models and finite element technologies to the finite element analysis result using our recent reinforced concrete panel experiment result. Throughout this study, we found that the judicious use of the material models and finite element technologies with the sound understanding of structural characteristics can only guarantee the accurate prediction of panel behaviour.

  • PDF

Study on the Sheet Metal Forming of the Brake Chamber Head using the Finite Element Analysis (유한요소해석을 이용한 브레이크 챔버 헤드 판재 성형에 관한 연구)

  • Lee, S.I.;Choi, D.H.;Lee, J.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the sheet metal forming process of the brake chamber head, which had a complex shape compared to the conventional head part, was investigated using finite element (FE) analysis. In order to prevent the forming failures such as necking and fracture, the multi-stage forming process was introduced. The forming process consisted of three steps: (1) first drawing, (2) second drawing, (3) final forming. Experimental and FE simulated results of the brake chamber head were compared, and the results showed that the required characteristics of the straightness and the wall thickness at each location were satisfied.