Browse > Article
http://dx.doi.org/10.12989/scs.2017.23.1.041

Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory  

Singh, S.K. (School of Civil Engineering, Galgotias University)
Chakrabarti, A. (Department of Civil Engineering, Indian Institute of Technology)
Publication Information
Steel and Composite Structures / v.23, no.1, 2017 , pp. 41-51 More about this Journal
Abstract
A $C^0$ FE model developed based on an efficient higher order zigzag theory is used for hygrothermal analysis of laminated composite plates. The $C^0$ FE model satisfies the inter-laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of $C^1$ continuity associated with the above plate theory. In the present theory the above mentioned $C^0$ continuity of the present element is compensated in the stiffness matrix formulation by using penalty parameter approach. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature/moisture fields (initial strains) must be consistent with total strain field. Special steps are introduced by field consistent approach (e.g., sampling at gauss points) to compensate this problem. A nine noded $C^0$ continuous isoparametric element is used in the proposed FE model. Comparison of present numerical results with other existing solutions shows that the proposed FE model is efficient, accurate and free of locking.
Keywords
hygrothermal; finite element; zigzag theory; laminated composites; $C^0$ element;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34.   DOI
2 Pittr, J. and Hartl, H. (1980), "Improved stress evaluation under thermal load for simple finite element", Int. J. Numer. Meth. Eng., 15(10), 1507-1515.   DOI
3 Prathap, G. and Naganarayana, B.P. (1990), "Consistent force resultant distributions in displacement elements with varying sectional properties", Int. J. Numer. Meths. Eng., 29(4), 775-783.   DOI
4 Prathap, G. and Naganarayana, B.P. (1995), "Consistent thermal stress evaluation in finite elements", Comput. Struct., 54(3), 415-426.   DOI
5 Rama Mohan, P., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higher order laminated plate theory", Composite Struct., 29(3-4), 445-456.   DOI
6 Rolfes, R., Noor, A.K. and Sparr, H. (1998), "Evaluation of tranverse thermal stresses in composite plates based on firstorder shear deformation theory", Comput. Methods Appl. Mech. Eng., 167, 355-368.   DOI
7 Savoia, M. and Reddy, J.N. (1995), "Three-dimensional thermal analysis of laminated composite plates", Int. J. Solids Struct., 32(5), 593-608.   DOI
8 Shankara, C. and Iyengar, N. (1996), "A $C^0$ element for the free vibration analysis of laminated composite plates", J. Sound Vib., 191(5), 721-738.   DOI
9 Singh, S.K. and Chakrabarti, A. (2011), "Hygrothermal analysis of laminated composite plates by using efficient higher order shear deformation theory", J. Solid Mech., 3(1), 85-95.
10 Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., Int. J., 14(3), 283-293.   DOI
11 Brischetto, S. (2012), "hygrothermal loading effects in bending analysis of multilayered composite plates", Comput. Model. Eng. Sci., 88(5), 367-418.
12 Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct., 45(3), 227-232.   DOI
13 Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated shells", Int. J. Solids Struct., 44(25-26), 8119-8142.   DOI
14 Bhaskar, K., Varadan, T.K. and Ali, J.S.M. (1996), "Thermoelastic solutions for orthotropic and anisotropic composite laminates", Compos.: Part B, 27(5), 415-420.   DOI
15 Brischetto, S. (2013), "Hygrothermoelastic analysis of multilayered composite and sandwich shells", J. Sandw. Struct. Mater., 15(2), 168-202.   DOI
16 Brischetto, S. and Carrera, E. (2010), "Coupled thermo-mechanical analysis of one-layered and multilayered plates", Compos. Struct., 92(8), 1793-1812.   DOI
17 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-2225.   DOI
18 Wu, Z. and Chen, W. (2006), "An efficient higher-order theory and finite element for laminated plates subjected to thermal loading", Compos. Struct., 73(1), 99-109.   DOI
19 Tungikar, V.B. and Rao, K.M. (1994), "Three-dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27(4), 419-430.   DOI
20 Wang, X., Dong, K. and Wang, X.Y. (2005), "Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators", Compos. Struct., 71(2), 220-228.   DOI
21 Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), "Thermal stress analysis of laminated plates using actual temperature field", Int. J. Mech. Sci., 49(11), 1276-1288.   DOI
22 Kapuria, S. and Achary, G.G.S. (2004), "An efficient higher-order zigzag theory for laminated plates subjected to thermal loading", Int. J. Solids and Struct., 41(16-17), 4661-4684.   DOI
23 Hadji, L., Daouadji, T., Tounsi, A. and Bedia, E. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., Int. J., 16(5), 507-519.   DOI
24 Kaci, A., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2014), "Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness", Steel Compos. Struct., Int. J., 16(4), 339-356.   DOI
25 Kant, T., Pandhari, S.S. and Desai, Y.M. (2008), "An efficient semi analytical model for composite and sandwich plates subjected to thermal load", J. Therm. Stress., 31(1), 77-103.   DOI
26 Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of crossply laminated shallow shells", Compos. Struct., 59(3), 313-340.   DOI
27 Matsunaga, H. (2004), "A comparison between 2-D single layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177.   DOI
28 Nguyen, K.T., Thai, T.H. and Vo, T.P. (2015), "A refined higherorder shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120.   DOI
29 Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A high-order theory of plate deformation, Part 1: Homogeneous plates", ASME J. Appl. Mech., 44(4), 663-668.   DOI
30 Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A high-order theory of plate deformation, Part 2: Laminated plates", ASME J. Appl. Mech., 44(4), 669-676.   DOI
31 Matsunaga, H. (2007), "Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading", Compos. Struct., 77(2), 249-262.   DOI
32 Lo, S.H., Wu, Z., Cheung, Y.K. and Chen, W. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher-order theory", Compos. Struct., 92(3), 633-646.   DOI
33 Makhecha, D.P., Ganapathi, M. and Patel, B.P. (2001), "Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory", Compos. Struct., 51(3), 221-236.   DOI
34 Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higherorder deformation theory", Compos. Struct., 68(4), 439-454.   DOI
35 Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1995), "Quadrileteral $C^0$ laminated plate elements based on higher order transverse deformation theory", Int. J. Eng. Anal. Des., 2, 157-178.
36 Ojalvo, I.V. (1974), "Improved thermal stress determination by finite element methods", J. AIAA, 12(8), 1131-1132.   DOI
37 Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1997), "Accurate thermal stress predictions using $C^0$ continuous higher-order shear deformable elements", Comput. Methods Appl. Mech. Eng., 144(1-2), 61-75.   DOI
38 Noor, A.K. and Burton, W.S. (1992), "Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates", Transact. ASME, J. Appl. Mech., 59(4), 848-856.   DOI
39 Oh, J.H. and Cho, M.H. (2007), "Higher order zigzag theoryforsmart composite shell sunder mechanical-thermoelectric loading", Int. J. Solids Struct., 44(1), 100-127.   DOI
40 Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite. Elem. Anal. Des., 44(9-10), 602-610.   DOI