• Title/Summary/Keyword: Finite cylinder

Search Result 592, Processing Time 0.024 seconds

A Numerical Study for the Variation of Cortical Bone Thickness with Several Dental Implants (인공치아에 있어 피질골의 두께 변화가 미치는 영향에 관한 연구)

  • Choi, J.B.;Moon, H.J.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.323-326
    • /
    • 1996
  • Dental implant is increasingly used to recover the mastication function of tooth. Several types of implant were designed to give an optimal stress distribution in surrounding bony regions. In this study, six types of implant were investigated using finite element method and it was studied i) how the variation of cortical bone thickness affects the stress distribution in surrounding bony regions depending upon implant types, ii) which type gives the best characteristics in the sence of stress distribution and stability. The hybrid-type implant with cylinder and screw gave the optimum properties in view of stability and response to the variation of cortical bone thickness.

  • PDF

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

  • Mo, Weihua;Liu, Philip L.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 2009
  • In thus paper we validate a numerical model for wave-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the volume of fluid (VOF) method The numerical model is used to simulate solitary waves and their interaction with a group of slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

Pressurization and Initial Extrusion of a Squeezed O-Ring into a Clearance Gap (유체압력(流體壓力)에 의한 Squeezed O-ring의 압착(壓着)과 초기(初期) 압출(押出) Mechanism)

  • Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.235-246
    • /
    • 1995
  • When an O-ring is installed in a high fluid pressure device, a section of the O-ring is extruded into the piston-cylinder clearance gap. Any tendency towards extrusion will induce wear in dynamic applications, leading to premature failure of the seal. In this study, the mechanism of initial extrusion of the O-ring was studied, 1.e., how much amount of the O-ring will be extruded into the clearance gap at a certain pressure. The relationship between extrusion depth and a clearance gap or fluid pressure were studied by finite element analysis (FEA). After that, Salita's experimental data were analyzed. The result is that Initial extrusion depth for an O-ring into a clearance gap was 1.11 times the product of dimensionless pressure difference $(p-p_1)/E$ and clearance gap c. The required pressure $p_1$ for zero extrusion depth was found to decrease logarithmically with increasing clearance gap.

  • PDF

Numerical Analysis on Combined Convection for a Vertical Cocentric Cylinder with External Fins (외부로 휜이 있는 수직이중관내의 조합대류 유동에 관한 수치적 연구)

  • Sohn, Sang-Suk;Lee, Chae-Moon;Yim, Jang-Soon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.118-124
    • /
    • 1985
  • The motion of a fluid in the closed annular cavity formed by two concentric vertical cylinders with externally finned tube has been analysed by a numerical solutions of the equation of momentum and energy. For the calculation procedure, the fluid is assumed to have constant thermo-dynamic and transporties except for the density, which is temperature-dependent in the buoyancy term of the vertical momentum equation (Boussinesq approximation). The govern ins equations for velocity and temperature are solved by a finite difference technique which incoorporates a scheme for treating the coupled variables. Results are presented for a range of the Rayleigh number and for various values of the fin height and the number of fins.

  • PDF

A Study on the Latent Heat Storage Unit Using Cement-Sand_Paraffin Wax Mixture (시멘트-모래-파라핀 왁스 혼합물을 이용한 축열에 관한 연구)

  • Yoo, Ho-Seon;Ro, Sung-Tack
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.9 no.3
    • /
    • pp.161-169
    • /
    • 1980
  • In order to enhance the thermal energy storage capacity of cement mortar and to improve the effective thermal conductivity of paraffin waxes, cement- sand- paraffin wax mixture was investigated. By means of finite difference method, the transient temperature distribution in a hollow cylinder with phase change using average composite properties was obtained, and compared with experimental results. It was shown that the heat absorbed by mixture with $25\%$ paraffin fraction was as much as $50\%$ more than either a concrete mortar or pure paraffin wax in the case of ${\Delta}T=\;18.25^{\circ}C$.

  • PDF

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

A TWO DIMENSIONAL STRESS ANALYSIS OF FIXED PROSTHESIS WITH OSSEOINTEGRATED IMPLANT AS AN INTERMEDIATE ABUTMENT (골유착성 임플란트를 중간 지대치로 사용한 고정성 보철물의 응력분석)

  • Park Sang-Soo;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.611-624
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution of the natural teeth, the implant, the prosthesis and the supporting tissue according to the types of implant and connection modality in the five-unit fixed partial denture with a implant pier abutment. A Two dimensional stress analysis model was constructed to represent a mandible missing the first and second premolars and first molar. The model contained a canine and second molar as abutment teeth and implant pier abutments with and without stress-absorbing element. Finite element models were created and analyzed using software ANSYS 4.4A for IBM 32bit personal computer. The results obtained were as follows. 1. Implant group, compared to the natural teeth group, showed a maximum principal stress at the superior portion of implants and a stress concentration at :he neck and end portion. 2. Maximum principal stress and maximum Von Mises stress were always lower in the case of rigid connection than nonrigid connection. 3. A cylinder type implant with stress absorbing element and screw type implant were generally similar in the stress distribution pattern. 4. A screw type implant, compared to the cylinder type implant, showed a relatively higher stress concentration at both neck and end portion of it. 5. Load B cases showed higher stress concentration on the posterior abutments in the case of nonrigid connector than rigid connector. 6. A maximum displacement was always lower in the case of rigid connection than nonrigid connection. These results suggest that osseointegrated implant can be used as an intermediate abutment.

  • PDF

Three dimensional stress analysis of implant-supported prosthesis with various misfit (적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석)

  • Yang, Hong-So;Chung, Hyun-Ju;Park, Yeong-Joon;Park, Sang-Won;Kunavisarut, Chatchai
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

Analysis of Dynamic Characteristics of a Piston for a Linear Compressor Considering Changes in Groove Geometry (리니어 압축기에서 그루브 형상 변화에 따른피스톤의 동특성 해석)

  • Noh, Sangwan;Oh, Wonsik;Park, Kyeongbae;Rhim, Yoonchul
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.221-228
    • /
    • 2015
  • It is possible to prevent a piston from contacting the cylinder by changing the shape of the piston or by applying micro-textures, such as micro-grooves or micro-holes, over the piston surface. Usually, the minimum radial clearance reaches its minimum value at the beginning of the suction stroke because the pressure around the piston is low and almost axisymmetric such that the net pressure force on the piston is not sufficiently high to support the piston from touching the cylinder. In this study, we apply a series of saw-tooth-shaped grooves on the piston surface, and numerically investigate the effects of groove depth, groove angle, and the number of grooves with radial clearance variations using a finite difference method. We conduct a dynamic analysis of the piston for various changes in groove geometries to obtain the minimum radial clearance variation for the entire compression cycle. The minimum radial clearance increases while friction loss decreases when we apply the series of saw-tooth-shaped grooves on the piston. In addition, we analyze the impact of the change in the groove shape variable due to changes in radial clearance. Leakage variations are relevant to radial clearance, but have almost no effect on the groove parameters.