• Title/Summary/Keyword: Finite Volume Method(FVM)

Search Result 137, Processing Time 0.031 seconds

Determination of the Ampacity of Buried Cable in Non-Homogenous Environmental Condition by 3D Computation

  • Vahidi, Behrooz;Mahmoudi, Amin
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.384-388
    • /
    • 2012
  • Finite Volume Method (FVM) is chosen to calculate the heat transfer field and the heat generation with in the cable and heat dissipation in the surrounding soil of a three phase 145kV underground cable brunch that make it possible to analyze the ampacity of the cable. FLUENT as the proper software in this field is used to generate and solve the problem. Non-homogenous environment is considered for cable ampacity calculation and results are compare with homogenous environment condition.

Experimental and Numerical Study on an Air-Stabilized Flexible Disk Rotating Close to a Rigid Rotating Disk (회전원판 근처에서 회전하는 유연디스크에 대한 실험 및 수치해석)

  • Gad, Abdelrasoul M.M.;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.19-35
    • /
    • 2009
  • The present work is an experimental and analytical study on a flexible disk rotating close to a rigid rotating disk in open air. In the analytical study, the air flow in the gap between the flexible disk and the rigid disk is modeled using Navier-Stokes and continuity equations while the flexible disk is modeled using the linear plate theory. The flow equations are discretized using the cell centered finite volume method (FVM) and solved numerically with semi-implicit pressure-linked equations (SIMPLE algorithm). The spatial terms in the disk equation are discretized using the finite difference method (FDM) and the time integration is performed using fourth-order Runge-Kutta method. An experimental test-rig is designed to investigate the dynamics of the flexible disk when rotating close to a co-rotating, a counter-rotating and a fixed rigid disk, which works as a stabilizer. The effects of rotational speed, initial gap height and inlet-hole radius on the flexible disk displacement and its vibration amplitude are investigated experimentally for the different types of stabilizer. Finally, the analytical and experimental results are compared.

  • PDF

Development of Incompressible flow solver based on unstructured FVM (비정렬 유한체적법을 이용한 비압축성 유동해석 코드 개발)

  • Kim Jong-Tae;Kim Yong-Mo;Maeng Joo-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.33-39
    • /
    • 1996
  • An incompressible flow stover based on the unstructured finite volume method has been developed. The flow domain is discretized by triangles in 2D or tetrahedra in 3D. The convective and viscous fluxes are obtained using edge connectivities of the unstructured meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. Laminar test flow problems are computed and presented with a comparison against other numerical solutions or experimental results.

  • PDF

Interference Effects of Neighboring Structures on Wind Pressure (인접 구조물의 상호 간섭 효과 해석)

  • Park, Sang-Jun;Lee, Seung-Un;Lee, Seung-Su
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.574-578
    • /
    • 2014
  • 본 연구에서는 인접 구조물의 상호 간섭에 의한 풍압 변화에 대한 분석을 수행하였다. 두 개의 구조물 사이의 거리 및 위치를 변경하여 비교 해석하는 것으로써 사각형 구조물 구현을 위해 EDISON_CFD를 이용하여 수치해석을 하였고, 유한 체적 법(Finite Volume Method, FVM) 기반의 범용 비압축성 유동 해석을 위해 2D_Incomp-P_2.1 해석자를 사용하였다. 이 연구를 통하여 인접한 구조물의 영향을 분석하여 상호 간 거리와 위치를 결정할 수 있는 근거자료를 확보하였다.

  • PDF

Effect of gate numbers on the characteristics cast (게이트 수에 따른 주물재의 특성 분석)

  • Lee, S.M.;Yi, H.K.;Lee, G.Y.;Mun, S.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.298-301
    • /
    • 2009
  • In this study, the casting process using forged insert was investigated to characterize the manufacturing process by which good mechanical properties can be obtained when compared with existing casting products. Process analysis for the casting design was performed by using FVM (Finite Volume Method) software. In filling process, three kinds of candidate gating systems are considered and analyzed respectively. The molten metal behavior in gating system is so important that it affects the solidification behavior of the cast.

  • PDF

A Study on the Pressure Drops of T-Branch Pipes (분기배관의 압력강하에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Kwon, Soon-Kwan;Kim, Dong-Hyun;Min, Kyung-Tak;Kim, Byoung-Gon;Lee, Sung-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.272-277
    • /
    • 2008
  • This study is performed for propose that exactly equivalent length of TBP in the applied at water-based fire protection system. For predict the measuring position of equivalent length, we determined the measuring position using the FVM about pressure drop of TBP. For the reckon of the exact about measured value we compared with the result of FVM and we knew the similar value each other. Using the results we proposed the friction loss measuring position that inlet of main dirction is 20 times of appellation diameter in main pipe, outlet of main dirction is 10 times of appellation diameter in main pipe and outlet of branched direction is 20 times of appellation diameter.

Numerical Study on Enhanced Heat Conduction of Phase-Change Thermal Energy Storage Devices in The Presence of Natural Convection (자연대류 영향을 고려한 상변화 열에너지 저장장치의 열전도향상에 관한 수치적 연구)

  • Chung, Hong-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.207-212
    • /
    • 1993
  • Numerical inverstigation of heat transfer in phase-change energy storage devices was performed in order to aid In the design process for a finned Phase-Change Material( PCM). A simplified model based on a quasi-linear, transient, thin fin equation, which predicts the fraction of melted phase-change material, and the shape of liquid-solid interface as a function of time, is used. The model is solved by using Finite Volume Method(FVM), and the numerical results have showed good agreement with experimental data.

  • PDF

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

Numerical Investigation of CuO-Water Nanofluid Flow and Heat Transfer across a Heated Square Cylinder

  • Bouazizi, Lotfi;Turki, Said
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.382-393
    • /
    • 2016
  • Flow over a bluff body is an attractive research field in thermal engineering. In the present study, laminar flow over a confined heated square cylinder using CuO-Water nanofluid is considered. Unsteady two-dimensional Navier-Stokes and energy equations are solved numerically using finite volume method (FVM). Recent correlations for the thermal conductivity and viscosity of nanofluids, which are function of nanoparticle volume fraction, temperature and nanoparticle diameter, have been employed. The results of numerical solution are obtained for Richardson number, nanoparticle volume fractions and nanoparticle diameters ranges of 0-1, 1-5% and 30-100 nm respectively for a fixed Reynolds number of Re = 150. At a given volume concentration, the investigations reveal that the decreasing in size of nanoparticles produces an increase in heat transfer rates from the square cylinder and a decrease in amplitude of the lift coefficient. Also, the increment of Nusselt number is more pronounced at higher concentrations and higher Richardson numbers.