• Title/Summary/Keyword: Finite Value Method

Search Result 913, Processing Time 0.027 seconds

A Simplified Method to Consider Forming Effects in a Car Crash Analysis (차량충돌해석 적용을 위한 간단화한 성형이력 고려 방법)

  • Huh, J.;Yoon, J.H.;Lim, J.H.;Park, S.H.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.259-262
    • /
    • 2008
  • This paper introduces a simplified method to consider forming effects in a car crash analysis. Representative value was used to consider forming effects simply. Four representative values, which are the mean value of thicknesses and effective plastic strains at nodes, the median of thicknesses and effective plastic strains at nodes, were evaluated. A crash analysis of a front side member shows that analysis results from the suggested methods are similar to those from the conventional method to consider forming effects. Use of the mean effective plastic strain shows the best results. A car crash analysis for a ULSAB/AVC model under the condition of US SINCAP were carried out to demonstrate the validity of the suggested method. Analysis results show that the error of suggested method is less than 1.5%.

  • PDF

NUMERICAL SOLUTIONS FOR MODELS OF LINEAR ELASTICITY USING FIRST-ORDER SYSTEM LEAST SQUARES

  • Lee, Chang-Ock
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.245-269
    • /
    • 1999
  • Multigrid method and acceleration by conjugate gradient method for first-order system least squares (FOSLS) using bilinear finite elements are developed for various boundary value problems of planar linear elasticity. They are two-stage algorithms that first solve for the displacement flux variable, then for the displacement itself. This paper focuses on solving for the displacement flux variable only. Numerical results show that the convergence is uniform even as the material becomes nearly incompressible. Computations for convergence factors and discretization errors are included. Heuristic arguments to improve the convergences are discussed as well.

  • PDF

The Finite Element Analysis and Experiment of Flexible Media Separation Mechanism (유연매체 분리기구의 유한요소해석과 실험)

  • Yoon, You-Hoon;Baek, Yoon-Kil;Yoon, Joon-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.322-325
    • /
    • 2005
  • The separation mechanism is installed to separate a note one by one from the stacked notes and the overlap type, one of separation mechanism, has been used a lot in financial equipments like ATM. This paper has compared and estimated analysis results using finite element method with experimental results over various parameters such as conditions of note, overlap value, roller shapes, which affect the friction force (resistance) exerting on notes between rollers. Consequently, the effect of various parameters on the performance of overlap type separation mechanism can be known and optimal shape and overlap value can be obtained.

  • PDF

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

A Study on Performance Prediction for a Magnetostrictive Ultrasonic Transducer According to Arrangement of Permanent Magnets for Biasing (바이어스 자기장용 영구자석 배치에 따른 자왜 초음파 변환기 성능 예측에 관한 연구)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1200-1209
    • /
    • 2010
  • The main subject of this paper is to develop analytic method with which output power or sensitivity variations of a magnetostrictive ultrasonic transducer can be estimated with no aid of experiments. After the bias magnetic field deployed over the patch is calculated using finite element analysis for magnetostatics, the representative value is extracted by averaging these field values. The operating point on the characteristic curve for magnetostriction is identified by this value and then the output performance is calculated from it. It is verified that the results from this simple model match well with those of its experimental version and some limits of this modeling technique are also considered.

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

General evolutionary path for fundamental natural frequencies of structural vibration problems: towards optimum from below

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.513-527
    • /
    • 1996
  • In this paper, both an approximate expression and an exact expression for the contribution factor of an element to the natural frequency of the finite element discretized system of a structure in general and a membrane in particular have been derived from the energy conservation principle and the finite element formulation of structural eigenvalue problems. The approximate expression for the contribution factor of an element is used to predict and determine the elements to be removed in an iteration since it depends only on the quantities associated with the old system in the iteration. The exact expression for the contribution factor of an element makes it possible to check whether the element is correctly removed at the end of an iteration because it depends on both the old system and the new system in the iteration. Thus, the combined use of the approximate expression and the exact expression allows a considerable number of elements to be removed in a single iteration so that the efficiency of the evolutionary structural optimization method can be greatly improved for solving the natural frequency optimization problem of a structure. A square membrane with different boundary supports has been chosen to investigate the general evolutionary path for the fundamental natural frequency of the structure. The related results indicated that if the objective of a structural optimization is to raise the fundamental natural frequency of the structure to an optimal value, the general evolutionary path during its optimization is that the elements are gradually removed along the direction from the area surrounded by the contour of the highest value to that surrounded by the contour of the lowest value.

A comparative study on the numerical analysis program by SSI analysis of a high-rise building and an adjacent underground structure (초고층 건물과 인접지하구조물의 SSI 해석을 통한 수치해석 프로그램 비교 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.211-225
    • /
    • 2019
  • Recently, earthquakes have occurred throughout the entire region of Korea and seismic analysis studies have been actively conducted in various fields. SSI analyses studies considering ground have been carried out consistently. However, few comparative analyses have been performed on the dynamic behavior of buildings according to numerical analysis method in the case of the previous dynamic analyses considering grounds. Therefore, in this study, the dynamic analyses were performed on a high-rise building by using both a finite element program MIDAS GTS NX and a finite difference program FLAC 2D. The results were compared and analyzed each other. As a result, both the maximum compressive and tensile bending stresses of above ground and below ground part were estimated to be a little larger by MIDAS GTS NX than by FLAC 2D. However, the maximum horizontal displacement value, the horizontal displacement distribution, and the position of weak part were turned out to be similar in both analysis programs. Therefore, it can be concluded that there is no difference in using either a finite element program or a finite difference program for the convenience of a user for a dynamic analysis.

Prediction of Penetration and Heat Affected Zone by Using Finite Element Method in $CO_2$ Arc Welding (유한 요소법을 이용한 $CO_2$아아크 용접부의 용입깊이와 열영향부 크기 예측)

  • 이정익;박일철;박기영;엄기원
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.222-229
    • /
    • 1992
  • A prediction of penetration and heat affected zone by using Finite Element Method in CO$_{2}$ Arc Welding has been discussed this paper. The temperature distribution of a base metal produced by the CO$_{2}$ arc welding processing is analyzed by using a three dimensional finite element model. The common finite element program ANSYS 4.4A was employed to obtain the numerical results. Temperature dependent material properties, effect of latent heat, and the convective boundary conditions are included in the model. Numerically predicted sizes of the penetration and the heat affected zone are compared with the experimentally observed values. As a result, there was a slight difference between numerical analysis values and experimentally observed values. For in the case of heat affected zone, it was not considered a precise forced convective coefficient value, and in the case of penetration, it was not, considered a arc force.

  • PDF