• Title/Summary/Keyword: Finite State Automata

Search Result 48, Processing Time 0.019 seconds

A Web-based Conversational Agent (웹기반 대화형 에이전트)

  • 이승익;오성배
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.530-540
    • /
    • 2003
  • As the amount of information on Internet sites increases, it becomes more necessary to provide information in efficient ways. However, information search methods based on Boolean combination of keywords that most sites provide are difficult to express user's intention adequately so that there are numerous unexpected search results. This paper proposes a conversational agent that provides users with accurate information in a friendly manner through natural language conversation. The agent recognizes user's intention by applying finite state automata to natural language queries, utilizes the intention for structured pattern matching with response knowledge, and thus provides answers that are robust against changes in word order and consistent with the user's intention. To show its practical utility, the agent is applied to the problem of introducing a Web site. The results show that the conversational agent has the ability to provide accurate and friendly responses.

Korean Continuous Speech Recognition Using Discrete Duration Control Continuous HMM (이산 지속시간제어 연속분포 HMM을 이용한 연속 음성 인식)

  • Lee, Jong-Jin;Kim, Soo-Hoon;Hur, Kang-In
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • In this paper, we report the continuous speech recognition system using the continuous HMM with discrete duration control and the regression coefficients. Also, we do recognition experiment using One Pass DP method(for 25 sentences of robot control commands) with finite state automata context control. In the experiment for 4 connected spoken digits, the recognition rates are $93.8\%$ when the discrete duration control and the regression coefficients are included, and $80.7\%$ when they are not included. In the experiment for 25 sentences of the robot control commands, the recognition rate are $90.9\%$ when FSN is not included and $98.4\%$ when FSN is included.

  • PDF

A Syllabic Segmentation Method for the Korean Continuous Speech (우리말 연속음성의 음절 분할법)

  • 한학용;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.70-75
    • /
    • 2001
  • This paper proposes a syllabic segmentation method for the korean continuous speech. This method are formed three major steps as follows. (1) labeling the vowel, consonants, silence units and forming the Token the sequence of speech data using the segmental parameter in the time domain, pitch, energy, ZCR and PVR. (2) scanning the Token in the structure of korean syllable using the parser designed by the finite state automata, and (3) re-segmenting the syllable parts witch have two or more syllables using the pseudo-syllable nucleus information. Experimental results for the capability evaluation toward the proposed method regarding to the continuous words and sentence units are 73.5%, 85.9%, respectively.

  • PDF

Perception-based analytical technique of evacuation behavior under radiological emergency: An illustration of the Kori area

  • Kim, Jeongsik;Kim, Byoung-Jik;Kim, Namhun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.825-832
    • /
    • 2021
  • A simulation-based approach is proposed to study the protective actions taken by residents during nuclear emergencies using cognitive findings. Human perception-based behaviors are not heavily incorporated in the evacuation study for nuclear emergencies despite their known importance. This study proposes a generic framework of perception-based behavior simulation, in accordance with the ecological concept of affordance theory and a formal representation of affordance-based finite state automata. Based on the generic framework, a simulation model is developed to allow an evacuee to perceive available actions and execute one of them according to Newton's laws of motion. The case of a shadow evacuation under nuclear emergency is utilized to demonstrate the applicability of the proposed framework. The illustrated planning algorithm enables residents to compute not only prior knowledge of the environmental map, but also the perception of dynamic surroundings, using widely observed heuristics. The simulation results show that the temporal and spatial dynamics of the evacuation behaviors can be analyzed based on individual perception of circumstances, while utilizing the findings in cognitive science under unavoidable data restriction of nuclear emergencies. The perception-based analysis of the proposed framework is expected to enhance nuclear safety technology by complementing macroscopic analyses for advanced protective measures.

Word Recognition Using K-L Dynamic Coefficients (K-L 동적 계수를 이용한 단어 인식)

  • 김주곤
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.103-106
    • /
    • 1998
  • 본 논문에서는 음성인식 시스템의 인식 정도의 향상을 위해서 동적 특징으로서 K-L(Karhanen-Loeve)계수를 이용하여 음소모델을 구성하는 방법을 제안하고, 음소, 단어, 숫자음 인식 실험을 통하여 그 유효성을 검토하였다. 인식 실험을 위한 음성자료는 한국 전자통신 연구소에서 채록한 445단어와 국어정보공학연구소에서 채록한 4연속 숫자음을 사용하였으며, K-L계수 동적 특징의 유효성을 확인하기 위해 정적 특징으로서 멜-켑스트럼과 동적 특징으로서 K-L계수 및 회귀계수를 추출한 후 음소, 단어, 숫자음 인식 실험을 수행하였다. 인식의 기본 단위로는 48개의 유사음소단위(Phoneme Likely Unite ; PLUs)를 음소모델로 사용하였으며, 단어와 숫자음 인식을 위해서는 유한상태 오토마타(Finite State Automata; FSA)에 의한 구문제어를 통한 OPDP(One Pass Dynamic Programming)법을 이용하였다. 인식 실험 결과, 음소인식에 있어서는 정적특징인 멜-켑스트럼을 사용한 경우 39.8%, K-L 동적 계수를 사용한 경우가 52.4%로 12.6%의 향상된 인식률을 얻었다. 또한, 멜-켑스트럼과 회수계수를 사용한 경우 60.1%, K-L계수와 회귀계수를 결합한 경우에 있어서도 60.4%로 높은 인식률은 얻었다. 이 결과를 단어인식에 확장하여 인식 실험을 수행한 결과, 기존의 멜-켑스트럼 계수를 사용한 경우 65.5%, K-L계수를 사용한 경우 75.8%로 10.3% 향상된 인식률을 얻었으며, 멜-켑스트럼과 회귀계수를 결합한 경우 91.2%, K-L계수와 회귀계수를 결합한 경우 91.4%의 높은 인식률을 보였다. 도한, 4연속 숫자음에 적용한 경우에 있어서도 멜-켑스트럼을 사용한 경우 67.5%, K-L계수를 사용한 경우 75.3%로 7.8%의 향상된 인식률을 보였으며 K-L계수와 회귀계수를 결합한 경우에서도 비교적 높은 인식률을 보여 숫자음에 대해서도 K-L계수의 유효성을 확인할 수 있었다.

  • PDF

A Development of Intelligent Simulation Tools based on Multi-agent (멀티 에이전트 기반의 지능형 시뮬레이션 도구의 개발)

  • Woo, Chong-Woo;Kim, Dae-Ryung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.21-30
    • /
    • 2007
  • Simulation means modeling structures or behaviors of the various objects, and experimenting them on the computer system. And the major approaches are DEVS(Discrete Event Systems Specification). Petri-net or Automata and so on. But, the simulation problems are getting more complex or complicated these days, so that an intelligent agent-based is being studied. In this paper, we are describing an intelligent agent-based simulation tool, which can supports the simulation experiment more efficiently. The significances of our system can be described as follows. First, the system can provide some AI algorithms through the system libraries. Second, the system supports simple method of designing the simulation model, since it's been built under the Finite State Machine (FSM) structure. And finally, the system acts as a simulation framework by supporting user not only the simulation engine, but also user-friendly tools, such as modeler scriptor and simulator. The system mainly consists of main simulation engine, utility tools, and some other assist tools, and it is tested and showed some efficient results in the three different problems.

  • PDF

Judgment about the Usefulness of Automatically Extracted Temporal Information from News Articles for Event Detection and Tracking (사건 탐지 및 추적을 위해 신문기사에서 자동 추출된 시간정보의 유용성 판단)

  • Kim Pyung;Myaeng Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.6
    • /
    • pp.564-573
    • /
    • 2006
  • Temporal information plays an important role in natural language processing (NLP) applications such as information extraction, discourse analysis, automatic summarization, and question-answering. In the topic detection and tracking (TDT) area, the temporal information often used is the publication date of a message, which is readily available but limited in its usefulness. We developed a relatively simple NLP method of extracting temporal information from Korean news articles, with the goal of improving performance of TDT tasks. To extract temporal information, we make use of finite state automata and a lexicon containing time-revealing vocabulary. Extracted information is converted into a canonicalized representation of a time point or a time duration. We first evaluated the extraction and canonicalization methods for their accuracy and investigated on the extent to which temporal information extracted as such can help TDT tasks. The experimental results show that time information extracted from text indeed helps improve both precision and recall significantly.

Part-of-speech Tagging for Hindi Corpus in Poor Resource Scenario

  • Modi, Deepa;Nain, Neeta;Nehra, Maninder
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.