Browse > Article
http://dx.doi.org/10.1016/j.net.2020.08.012

Perception-based analytical technique of evacuation behavior under radiological emergency: An illustration of the Kori area  

Kim, Jeongsik (School of Mechanical, Aerospace, and Nuclear Engineering, Ulsan National Institute of Science and Technology)
Kim, Byoung-Jik (Korea Institute of Nuclear Safety)
Kim, Namhun (School of Mechanical, Aerospace, and Nuclear Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.3, 2021 , pp. 825-832 More about this Journal
Abstract
A simulation-based approach is proposed to study the protective actions taken by residents during nuclear emergencies using cognitive findings. Human perception-based behaviors are not heavily incorporated in the evacuation study for nuclear emergencies despite their known importance. This study proposes a generic framework of perception-based behavior simulation, in accordance with the ecological concept of affordance theory and a formal representation of affordance-based finite state automata. Based on the generic framework, a simulation model is developed to allow an evacuee to perceive available actions and execute one of them according to Newton's laws of motion. The case of a shadow evacuation under nuclear emergency is utilized to demonstrate the applicability of the proposed framework. The illustrated planning algorithm enables residents to compute not only prior knowledge of the environmental map, but also the perception of dynamic surroundings, using widely observed heuristics. The simulation results show that the temporal and spatial dynamics of the evacuation behaviors can be analyzed based on individual perception of circumstances, while utilizing the findings in cognitive science under unavoidable data restriction of nuclear emergencies. The perception-based analysis of the proposed framework is expected to enhance nuclear safety technology by complementing macroscopic analyses for advanced protective measures.
Keywords
Affordance theory; Agent-based simulation; Bandwagon effect; Emergency evacuation; Protective action; Availability heuristic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Moussaid, D. Helbing, G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Natl. Acad. Sci. U. S. A 108 (2011) 6884-6888, https://doi.org/10.1073/pnas.1016507108.   DOI
2 K. Ransikarbum, N. Kim, S. Ha, R.A. Wysk, L. Rothrock, A highway-driving system design viewpoint using an agent-based modeling of an affordance-based finite state automata, IEEE Access 6 (2017) 2193-2205, https://doi.org/10.1109/ACCESS.2017.2782257.   DOI
3 M.K. Lindell, R.W. Perry, The protective action decision model: theoretical modifications and additional evidence, Risk Anal. (2012), https://doi.org/10.1111/j.1539-6924.2011.01647.x.   DOI
4 J. Lee, Analysis on Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, Pusan university, 2016.
5 W.K.V. Chan, Y.-J. Son, C.M. Macal, Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation, in: Proc. 2010 Winter Simul. Conf, IEEE, 2010, pp. 135-150.
6 M.K. Lindell, J.C. Lu, C.S. Prater, Household decision making and evacuation in response to Hurricane Lili, Nat. Hazards Rev. (2005), https://doi.org/10.1061/(ASCE)1527-6988(2005)6:4(171).   DOI
7 S.E. Asch, Effects of group pressure on the modification and distortion of judgments, in: H. Guetzkow (Ed.), Groups, Leadersh. Men, 1951, https://doi.org/10.1038/scientificamerican1155-31.
8 M.J. Widener, M.W. Horner, S.S. Metcalf, Simulating the effects of social networks on a population's hurricane evacuation participation, J. Geogr. Syst. 15 (2013) 193-209.   DOI
9 S. Lee, Y.-J. Son, J. Jin, An integrated human decision making model for evacuation scenarios under a BDI framework, ACM Trans. Model Comput. Simulat. 20 (2010) 1-24.
10 S. Lee, Y.J. Son, J. Jin, Decision field theory extensions for behavior modeling in dynamic environment using Bayesian belief network, Inf. Sci. (2008), https://doi.org/10.1016/j.ins.2008.01.009.   DOI
11 J. Vande Putte, Lessons from Fukushima, Green Piece. http://www.ohmynews. com/NWS_Web/view/at_pg.aspx?CNTN_CD=A0001725638&PAGE_CD=12, 2012.
12 T. Urbanik, Evacuation time estimates for nuclear power plants, in: J. Hazard Mater., 2000, https://doi.org/10.1016/S0304-3894(00)00178-3.   DOI
13 S. Nomura, M. Blangiardo, M. Tsubokura, Y. Nishikawa, S. Gilmour, M. Kami, S. Hodgson, Post-nuclear disaster evacuation and survival amongst elderly people in Fukushima: a comparative analysis between evacuees and nonevacuees, Prev. Med. (2016), https://doi.org/10.1016/j.ypmed.2015.11.014.   DOI
14 N. Kim, J. Joo, L. Rothrock, R. Wysk, Y.J. Son, Human behavioral simulation using affordance-based agent model, in: J.A. Jacko (Ed.), Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 368-377, https://doi.org/10.1007/978-3-642-21602-2_40.
15 K. Tanigawa, Y. Hosoi, N. Hirohashi, Y. Iwasaki, K. Kamiya, Loss of life after evacuation: lessons learned from the Fukushima accident, Lancet (2012), https://doi.org/10.1016/S0140-6736(12)60384-5.   DOI
16 M. Kornhauser, Structural Effects of Impact, Spartan Books, 1964.
17 B. Muller, F. Bohn, G. Dressler, J. Groeneveld, C. Klassert, R. Martin, M. Schluter, J. Schulze, H. Weise, N. Schwarz, Describing human decisions in agent-based models - ODD+D, an extension of the ODD protocol, Environ. Model. Software (2013), https://doi.org/10.1016/j.envsoft.2013.06.003.   DOI
18 M. Busogi, D. Shin, H. Ryu, Y.G. Oh, N. Kim, Weighted affordance-based agent modeling and simulation in emergency evacuation, Saf. Sci. (2017), https://doi.org/10.1016/j.ssci.2017.04.005.   DOI
19 J.-E. Yang, Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives, J. Nucl. Eng. Technol. 46 (2014) 27-38.   DOI
20 BBC, Japan Confirms First Fukushima Worker Death from Radiation, n.d. https://www.bbc.com/news/world-asia-45423575, 2018.
21 S. Korea, National Radiological Anti-disaster Plan 2020-2024. https://www.ulsan.go.kr/safe/fhradplan2, 2019.
22 J. Lee, J.J. Jeong, W. Shin, E. Song, C. Cho, The estimated evacuation time for the emergency planning zone of the Kori nuclear site, with a focus on the precautionary action zone, J. Radiat. Prot. Res. (2016), https://doi.org/10.14407/jrpr.2016.41.3.196.   DOI
23 J. Pearl, Some recent results in heuristic search theory, IEEE Trans. Pattern Anal. Mach. Intell. (1984), https://doi.org/10.1109/TPAMI.1984.4767470.   DOI
24 G. Gigerenzer, W. Gaissmaier, Heuristic decision making, Annu. Rev. Psychol. 62 (2011) 451-482, https://doi.org/10.1146/annurev-psych-120709-145346.   DOI
25 H. Fu, C.G. Wilmot, Sequential logit dynamic travel demand model for hurricane evacuation, in: Transport. Res. Rec., 2004, https://doi.org/10.3141/1882-03.   DOI
26 N. Kim, D. Shin, R.A. Wysk, L. Rothrock, Using finite state automata (FSA) for formal modelling of affordances in human-machine cooperative manufacturing systems, Int. J. Prod. Res. (2010), https://doi.org/10.1080/00207540802582235.   DOI
27 J. Groeneveld, A. Klabunde, M.L. O'Brien, A. Grow, How to describe agent-based models in population studies?, in: Agent-Based Model. Popul. Stud. Springer, Cham, CH, 2017, pp. 237-254, https://doi.org/10.1007/978-3-319-32283-4_9.
28 J. Joo, N. Kim, R.A. Wysk, L. Rothrock, Y.J. Son, Y.G. Oh, S. Lee, Agent-based simulation of affordance-based human behaviors in emergency evacuation, Simulat. Model. Pract. Theor. 32 (2013) 99-115, https://doi.org/10.1016/j.simpat.2012.12.007.   DOI
29 J.A. Bargh, T.L. Chartrand, The unbearable automaticity of being, Am. Psychol. (1999), https://doi.org/10.1037/0003-066X.54.7.462.   DOI
30 Japanese Cabinet Office (In charge of Nuclear Disaster Prevention), Estimation of Evacuation Time on the Accreditation of Nuclear Disaster Basic Consideration Methods and Procedures Guide, 2016.
31 J.J. Gibson, The concept of affordances, in: Perceiving, Acting, Knowing Towar. An Ecol. Psychol., 1977.
32 U.S. Nuclear Regulatory Commission, Criteria for Protective Action Recommendations for Severe Accidents (SAND2010-2806), Washington D.C, 2010.
33 M.K. Lindell, P. Murray-Tuite, B. Wolshon, E.J. Baker, Large-Scale Evacuation. https://doi.org/10.4324/9781315119045, 2018.
34 N. Wilkinson, M. Klaes, An Introduction to Behavioral Economics. https://doi. org/10.1057/978-1-137-52413-3, 2018.
35 M.T. Turvey, Affordances and prospective control: an outline of the ontology, Ecol. Psychol. (1992), https://doi.org/10.1207/s15326969-co0403_3.
36 R.J. Allan, D. Laboratory, Survey of Agent Based Modelling and Simulation Tools, Science & Technology Facilities Council, Swindon, UK, 2010.
37 T.C. Schelling, Dynamic models of segregation, J. Math. Sociol. 1 (1971) 143-186, https://doi.org/10.1080/0022250X.1971.9989794.   DOI
38 Korean Nuclear Safety Commission, Regulations on Radiological Emergency Measures for Nuclear Operators (Article 4 Clause 7), South Korea, http://www.law.go.kr/lsInfoP.do?lsiSeq=203957&efYd=20180628#0000, 2019.
39 N. Kim, J. Joo, L. Rothrock, R.A. Wysk, An affordance-based formalism for modeling human-involvement in complex systems for prospective control, in: Proc. - Winter Simul. Conf., 2010, https://doi.org/10.1109/WSC.2010.5679107.   DOI
40 J. Kim, N. Kim, J. Ma, Affordance-based modeling of a human-robot cooperative system for area exploration, J. Mech. Sci. Technol. 34 (2020), https://doi.org/10.1007/s12206-020-01.
41 M. Sniedovich, Dijkstra's algorithm revisited: the dynamic programming connexion, in: Contr. Cybern, 3rd vol. 35, Systems Research Institute, Polish Academy of Sciences, 2006.
42 N. Kim, D. Shin, R.A. Wysk, L. Rothrock, The hierarchical modeling of human planning activities with affordances using finite state automata (FSA), in: IIE Annu. Conf. Expo 2008, Institute of Industrial and Systems Engineers (IISE), 2008, pp. 1019-1024.
43 A. Steiniger, F. Kruger, A.M. Uhrmacher, Modeling agents and their environment in multi-level-DEVS, in: Winter Simul. Conf., Winter Simulation Conference, Berlin, DE, 2012, pp. 1-12.
44 L. Rothrock, R. Wysk, N. Kim, D. Shin, Y.J. Son, J. Joo, A modelling formalism for human-machine cooperative systems, in: Int. J. Prod. Res., 2011, https://doi.org/10.1080/00207543.2010.511637.   DOI
45 Y.G. Oh, I. Ju, W. Lee, N. Kim, Modeling and implementation of the affordancebased human-machine collaborative system, J. Korean Inst. Ind. Eng. 41 (2015) 34-42, https://doi.org/10.7232/jkiie.2015.41.1.034.   DOI
46 H. Ritchie, What was the death toll from Chernobyl and Fukushima? Our World Data (2017) 1. https://ourworldindata.org/what-was-the-death-tollfrom-chernobyl-and-fukushima#deaths-from-fukushima.